找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Symmetries, Topology and Resonances in Hamiltonian Mechanics; Valerij V. Kozlov Book 1996 Springer-Verlag Berlin Heidelberg 1996 Bewegungs

[复制链接]
查看: 29573|回复: 45
发表于 2025-3-21 16:21:16 | 显示全部楼层 |阅读模式
书目名称Symmetries, Topology and Resonances in Hamiltonian Mechanics
编辑Valerij V. Kozlov
视频video
丛书名称Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
图书封面Titlebook: Symmetries, Topology and Resonances in Hamiltonian Mechanics;  Valerij V. Kozlov Book 1996 Springer-Verlag Berlin Heidelberg 1996 Bewegungs
描述John Hornstein has written about the author‘s theorem on nonintegrability of geodesic flows on closed surfaces of genus greater than one: "Here is an example of how differential geometry, differential and algebraic topology, and Newton‘s laws make music together" (.Amer. Math. Monthly., November 1989). .Kozlov‘s book is a systematic introduction to the problem of exact integration of equations of dynamics. The key to the solution is to find nontrivial symmetries of Hamiltonian systems. After Poincaré‘s work it became clear that topological considerations and the analysis of resonance phenomena play a crucial role in the problem on the existence of symmetry fields and nontrivial conservation laws.
出版日期Book 1996
关键词Bewegungsintegral; Hamiltonian Mechanics; Hamiltonsche Systeme; Separatrixspaltung; Symmetriefelder; diff
版次1
doihttps://doi.org/10.1007/978-3-642-78393-7
isbn_softcover978-3-642-78395-1
isbn_ebook978-3-642-78393-7Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightSpringer-Verlag Berlin Heidelberg 1996
The information of publication is updating

书目名称Symmetries, Topology and Resonances in Hamiltonian Mechanics影响因子(影响力)




书目名称Symmetries, Topology and Resonances in Hamiltonian Mechanics影响因子(影响力)学科排名




书目名称Symmetries, Topology and Resonances in Hamiltonian Mechanics网络公开度




书目名称Symmetries, Topology and Resonances in Hamiltonian Mechanics网络公开度学科排名




书目名称Symmetries, Topology and Resonances in Hamiltonian Mechanics被引频次




书目名称Symmetries, Topology and Resonances in Hamiltonian Mechanics被引频次学科排名




书目名称Symmetries, Topology and Resonances in Hamiltonian Mechanics年度引用




书目名称Symmetries, Topology and Resonances in Hamiltonian Mechanics年度引用学科排名




书目名称Symmetries, Topology and Resonances in Hamiltonian Mechanics读者反馈




书目名称Symmetries, Topology and Resonances in Hamiltonian Mechanics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:06:13 | 显示全部楼层
发表于 2025-3-22 01:13:32 | 显示全部楼层
发表于 2025-3-22 05:42:30 | 显示全部楼层
https://doi.org/10.1007/978-3-642-78393-7Bewegungsintegral; Hamiltonian Mechanics; Hamiltonsche Systeme; Separatrixspaltung; Symmetriefelder; diff
发表于 2025-3-22 11:17:56 | 显示全部楼层
Introduction,In 1834 Hamilton represented the differential equations of classical mechanics, i.e., the Lagrange equations.in “canonical” form
发表于 2025-3-22 15:22:18 | 显示全部楼层
发表于 2025-3-22 19:41:21 | 显示全部楼层
Nonintegrability of Hamiltonian Systems Close to Integrable Ones,We begin the consideration of the analytic obstacles to integrability with the analysis of Poincaré’s “basic problem of dynamics”. This problem deals with the Hamiltonian system whose Hamiltonian has the form
发表于 2025-3-22 21:13:06 | 显示全部楼层
发表于 2025-3-23 04:49:58 | 显示全部楼层
Integration of Hamiltonian Systems, definition of integrability, we discover that many different definitions are possible and each of them is interesting from a certain theoretical point of view” (Birkhoff [23]). In this chapter we survey various approaches to the problem of integrability of Hamiltonian systems.
发表于 2025-3-23 08:57:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 07:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表