找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Symmetries in Graphs, Maps, and Polytopes; 5th SIGMAP Workshop, Jozef Širáň,Robert Jajcay Conference proceedings 2016 Springer Internationa

[复制链接]
楼主: Nutraceutical
发表于 2025-3-23 10:24:35 | 显示全部楼层
发表于 2025-3-23 15:18:56 | 显示全部楼层
发表于 2025-3-23 20:12:05 | 显示全部楼层
发表于 2025-3-24 01:20:49 | 显示全部楼层
发表于 2025-3-24 03:38:17 | 显示全部楼层
Conference proceedings 2016ies of discrete objects and structures, with a particular emphasis on connections between maps, Riemann surfaces and dessins d’enfant..Providing the global community of researchers in the field with the opportunity to gather, converse and present their newest findings and advances, the Symmetries In
发表于 2025-3-24 08:07:05 | 显示全部楼层
发表于 2025-3-24 13:19:05 | 显示全部楼层
On Pentagonal Geometries with Block Size 3, 4 or 5,e also prove that there exists a PENT(4, .) for . 1 (mod 8) and a PENT(5, .) for . 1 (mod 5), ., apart from nine possible exceptions. Further we construct an infinite class of pentagonal geometries PENT(.), ., and a PENT(6, 13).
发表于 2025-3-24 16:30:29 | 显示全部楼层
,The Grothendieck-Teichmüller Group of a Finite Group and ,-Dessins d’enfants, calculations. It turns out that the classical action of the Grothendieck-Teichmüller group on dessins d’enfants can be refined to an action on “.-dessins”, which we define, and this elucidates much of the first part.
发表于 2025-3-24 22:27:52 | 显示全部楼层
Powers of Skew-Morphisms,mplementary products of finite groups . with . cyclic and .. As natural generalizations of group automorphisms, they share many of their properties but proved much harder to classify. Unlike automorphisms, not all powers of skew-morphisms are skew-morphisms again. We study and classify the powers of
发表于 2025-3-24 23:59:14 | 显示全部楼层
Census of Quadrangle Groups Inclusions,e and quadrangle groups forming a particular subfamily of Fuchsian groups. With two exceptions, each inclusion determines a finite bipartite map (hypermap) on a 2-dimensional spherical orbifold that encodes the complete information and gives a graphical visualisation of the inclusion. A complete des
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 11:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表