找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Symmetries and Singularity Structures; Integrability and Ch Muthuswamy Lakshmanan,Muthiah Daniel Conference proceedings 1990 Springer-Verla

[复制链接]
楼主: PLY
发表于 2025-3-25 05:05:40 | 显示全部楼层
发表于 2025-3-25 09:47:16 | 显示全部楼层
发表于 2025-3-25 15:13:36 | 显示全部楼层
发表于 2025-3-25 17:57:15 | 显示全部楼层
发表于 2025-3-25 20:45:11 | 显示全部楼层
Lie Algebra, Bi-Hamiltonian Structure and Reduction Problem for Integrable Nonlinear Systemssystem with 3 × 3 matrix structure. An important aspect of our formulation is to implement reduction mechanism to arrive at a specific nonlinear system. As examples we have discussed the cases of KdV, Langmuir solitons.
发表于 2025-3-26 04:03:48 | 显示全部楼层
On the Role of Virasoro, Kac-Moody Algebra and Conformal Invariance in Soliton Hierarchieshe importance of conformal invariance is emphasized and some new aspects of complete integrability are exhibited. Lastly the relation between bi-Hamiltonian structure and conformal invariance is explained.
发表于 2025-3-26 04:45:41 | 显示全部楼层
发表于 2025-3-26 09:52:22 | 显示全部楼层
Avoided Level Crossing, Solitons and Random Matrix Theoryntegrability parameter is varied. We proceed to study the statistical mechanics of gCM system on the basis of the grand-canonical ensemble. We obtain the probability densities for both the level curvature and level spacing, thereby suggesting an important way to go beyond the traditional framework of the random matrix theory.
发表于 2025-3-26 15:17:05 | 显示全部楼层
A Singularity Analysis Approach to the Solutions of Duffing’s Equationngularity patterns are seen to further “condense”, as Q increases and the motion becomes . more chaotic in real t. These results suggest that series expansions near singularities in the complex t-plane can provide useful representations of the general solution of Duffing’s equation.
发表于 2025-3-26 18:36:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-16 05:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表