用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Symmetric Spaces and the Kashiwara-Vergne Method; François Rouvière Book 2014 Springer International Publishing Switzerland 2014 43A85,53C

[复制链接]
查看: 41691|回复: 35
发表于 2025-3-21 17:24:05 | 显示全部楼层 |阅读模式
书目名称Symmetric Spaces and the Kashiwara-Vergne Method
编辑François Rouvière
视频video
概述The first introduction to the subject in a self-contained monograph.Emphasizes motivations, and links with classical analysis on symmetric spaces.Includes a list of open problems
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Symmetric Spaces and the Kashiwara-Vergne Method;  François Rouvière Book 2014 Springer International Publishing Switzerland 2014 43A85,53C
描述Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne‘s original work for Lie groups. The book includes a complete rewriting of several articles by the author, updated and improved following Alekseev, Meinrenken and Torossian‘s recent
出版日期Book 2014
关键词43A85,53C35,17B01,43A90,58J70,22E30,33C80; ; Campbell-Hausdorff formula; Duflo isomorphism; Invariant di
版次1
doihttps://doi.org/10.1007/978-3-319-09773-2
isbn_softcover978-3-319-09772-5
isbn_ebook978-3-319-09773-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

书目名称Symmetric Spaces and the Kashiwara-Vergne Method影响因子(影响力)




书目名称Symmetric Spaces and the Kashiwara-Vergne Method影响因子(影响力)学科排名




书目名称Symmetric Spaces and the Kashiwara-Vergne Method网络公开度




书目名称Symmetric Spaces and the Kashiwara-Vergne Method网络公开度学科排名




书目名称Symmetric Spaces and the Kashiwara-Vergne Method被引频次




书目名称Symmetric Spaces and the Kashiwara-Vergne Method被引频次学科排名




书目名称Symmetric Spaces and the Kashiwara-Vergne Method年度引用




书目名称Symmetric Spaces and the Kashiwara-Vergne Method年度引用学科排名




书目名称Symmetric Spaces and the Kashiwara-Vergne Method读者反馈




书目名称Symmetric Spaces and the Kashiwara-Vergne Method读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:48:50 | 显示全部楼层
发表于 2025-3-22 02:44:29 | 显示全部楼层
发表于 2025-3-22 05:03:45 | 显示全部楼层
发表于 2025-3-22 10:47:21 | 显示全部楼层
François RouvièreThe first introduction to the subject in a self-contained monograph.Emphasizes motivations, and links with classical analysis on symmetric spaces.Includes a list of open problems
发表于 2025-3-22 14:46:59 | 显示全部楼层
发表于 2025-3-22 18:15:53 | 显示全部楼层
978-3-319-09772-5Springer International Publishing Switzerland 2014
发表于 2025-3-22 21:51:18 | 显示全部楼层
Symmetric Spaces and the Kashiwara-Vergne Method978-3-319-09773-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-23 01:56:40 | 显示全部楼层
发表于 2025-3-23 09:00:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-6 13:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表