用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Symbolic and Numerical Scientific Computation; Second International Franz Winkler,Ulrich Langer Conference proceedings 2003 Springer-Verlag

[复制链接]
楼主: HEM
发表于 2025-3-26 21:02:20 | 显示全部楼层
发表于 2025-3-27 02:38:58 | 显示全部楼层
0302-9743 nds of reviewing and improvement. The papers are organized in topical sections on symbolics and numerics of differential equations, symbolics and numerics in algebra and geometry, and applications in physics and engineering..978-3-540-40554-2978-3-540-45084-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-27 09:01:50 | 显示全部楼层
发表于 2025-3-27 11:49:45 | 显示全部楼层
Resultants and Neighborhoods of a Polynomialrtain, thus they have a limited accuracy. In this context we give a new approach based on the idea of using resultant in order to know the common factors between an empirical polynomial and a generic polynomial in its neighborhood. Moreover given a polynomial, the Square Free property for the polynomials in its neighborhood is investigated.
发表于 2025-3-27 16:36:47 | 显示全部楼层
Multi-variate Polynomials and Newton-Puiseux Expansionsions of the type .(.) = 0, . ∈ ℂ [..,..., ..][.]. For this purpose we will use a generalization of the Newton polygon - the Newton polyhedron - and a generalization of Puiseux series for several variables.
发表于 2025-3-27 21:16:16 | 显示全部楼层
发表于 2025-3-28 01:00:42 | 显示全部楼层
发表于 2025-3-28 05:37:46 | 显示全部楼层
https://doi.org/10.1007/3-540-45084-XComputer; Triangulation; algorithms; calculus; computation; computational geometry; computational science;
发表于 2025-3-28 08:59:43 | 显示全部楼层
Solving Symbolic and Numerical Problems in the Theory of Shells with ,®The theory of shells describes the behaviour (displacement, deformation and stress analysis) of thin bodies (thin walled structures) defined in the neighbourhood of a curved surface in the 3D space. Most of contemporary theories of shells use differential geometry as a mathematical tools and tensor analysis for notations. Examples are [1, 2, 3].
发表于 2025-3-28 10:57:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-16 05:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表