找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Sustainable Building and Built Environments to Mitigate Climate Change in the Tropics; Conceptual and Pract Tri Harso Karyono,Robert Vale,B

[复制链接]
楼主: invigorating
发表于 2025-3-26 21:05:39 | 显示全部楼层
发表于 2025-3-27 04:16:43 | 显示全部楼层
Abbas Mahravan mathematics.
.The continuous martingale inequalities were then used by Burkholder, Gundy, and Silverstein to prove the converse of an old and celebrated theorem of Hardy and Littlewood. This paper transformed the theory of Hardy spaces of analytic functions in the unit disc and extended and co
发表于 2025-3-27 08:30:12 | 显示全部楼层
发表于 2025-3-27 13:23:59 | 显示全部楼层
发表于 2025-3-27 16:44:11 | 显示全部楼层
发表于 2025-3-27 21:25:00 | 显示全部楼层
发表于 2025-3-28 00:39:26 | 显示全部楼层
s.
.Pioneering work by Burkholder and Donald Austin on the discrete time martingale square function led to Burkholder and Richard Gundy‘s proof of inequalities comparing the quadratic variations and maximal functions of continuous martingales, inequalities which are now indispensable tools for
发表于 2025-3-28 02:38:37 | 显示全部楼层
发表于 2025-3-28 07:46:43 | 显示全部楼层
s.
.Pioneering work by Burkholder and Donald Austin on the discrete time martingale square function led to Burkholder and Richard Gundy‘s proof of inequalities comparing the quadratic variations and maximal functions of continuous martingales, inequalities which are now indispensable tools for
发表于 2025-3-28 10:24:31 | 显示全部楼层
Tri Harso Karyonos.
.Pioneering work by Burkholder and Donald Austin on the discrete time martingale square function led to Burkholder and Richard Gundy‘s proof of inequalities comparing the quadratic variations and maximal functions of continuous martingales, inequalities which are now indispensable tools for
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 07:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表