找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Survival Analysis: State of the Art; John P. Klein,Prem K. Goel Book 1992 Springer Science+Business Media B.V. 1992 Estimator.Radiologiein

[复制链接]
楼主: HEIR
发表于 2025-3-26 21:40:12 | 显示全部楼层
Kernel Density Estimation from Record-Breaking Dataments. Here, for such record-breaking data, kernel density estimation is considered. For a single record-breaking sample, consistent estimation is not possible except in the extreme tails of the distribution. Hence, replication is required, and for m such independent record-breaking samples, the ker
发表于 2025-3-27 03:35:34 | 显示全部楼层
Semiparametric Estimation Of Parametric Hazard Ratesmetric ones are sometimes too biased while the nonparametric ones are sometimes too variable. There should therefore be scope for methods that somehow try to combine parametric and nonparametric features. In the present paper three semiparametric approaches to hazard rate estimation are presented. T
发表于 2025-3-27 08:26:09 | 显示全部楼层
Cox-Type Regression Analysis for Large Numbers of Small Groups of Correlated Failure Time Observatioure time observations, we show that the standard maximum partial likelihood estimate of the regression coefficient in the Cox model is still consistent and asymptotically normal. However, the corresponding standard variance-covariance estimate may no longer be valid due to the dependence among membe
发表于 2025-3-27 09:31:28 | 显示全部楼层
发表于 2025-3-27 17:06:02 | 显示全部楼层
发表于 2025-3-27 20:40:04 | 显示全部楼层
发表于 2025-3-27 23:04:22 | 显示全部楼层
发表于 2025-3-28 05:59:30 | 显示全部楼层
Bayesian Computations in Survival Models Via the Gibbs Samplerperspective, these features combine to create difficult computational problems by seeming to require (multi-dimensional) numerical integrals over awkwardly defined regions. This paper illustrates how these apparent difficulties can be overcome, in both parametric and nonparametric settings, by the Gibbs sampler approach to Bayesian computation.
发表于 2025-3-28 09:13:52 | 显示全部楼层
发表于 2025-3-28 10:53:27 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-7 23:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表