找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional; Enno Keßler Book 2019 The Author(s) 2019 Gravitino.Superco

[复制链接]
楼主: 讽刺文章
发表于 2025-3-23 13:43:44 | 显示全部楼层
发表于 2025-3-23 16:24:31 | 显示全部楼层
Metrics and Gravitinosed on |.|. We will show that a given .-structure on . induces a metric ., a spinor bundle . and a differential form . with values in ., called gravitino, on |.|. Different .-structures on . induce metrics and gravitinos which differ only by conformal and super Weyl transformations. Furthermore, the
发表于 2025-3-23 18:00:48 | 显示全部楼层
The Superconformal Action Functional and any .-metric . on ., the action functional .(., .) is a function in . that depends on the super Riemann surface structure on . and the map .. We will see that the action functional .(., .) is a natural generalization of the action functional of harmonic maps on Riemann surfaces in several aspec
发表于 2025-3-23 23:52:19 | 显示全部楼层
Vector Bundlesg linear supermanifold is slightly more complicated than in ordinary differential geometry because there are no points corresponding to odd elements of the vector space. Consequently, the theory of sections of a vector bundle is more complicated than expected, and the more algebraic approach via locally free modules is to be preferred sometimes.
发表于 2025-3-24 03:37:23 | 显示全部楼层
Principal Fiber Bundles formulated in terms of a reduction of the structure group of the frame bundle of the vector bundle. The theory of connections on principal bundles sheds light on properties of covariant derivatives that are compatible with such extra structures.
发表于 2025-3-24 09:34:26 | 显示全部楼层
发表于 2025-3-24 14:32:21 | 显示全部楼层
发表于 2025-3-24 14:54:52 | 显示全部楼层
Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional978-3-030-13758-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-24 22:06:20 | 显示全部楼层
发表于 2025-3-25 02:25:52 | 显示全部楼层
https://doi.org/10.1007/978-3-030-13758-8Gravitino; Superconformal Action Functional; Supergeometry; Super Riemann Surfaces; Two-dimensional Non-
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 17:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表