找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Sublinear Computation Paradigm; Algorithmic Revoluti Naoki Katoh,Yuya Higashikawa,Yushi Uno Book‘‘‘‘‘‘‘‘ 2022 The Editor(s) (if applicable)

[复制链接]
查看: 12264|回复: 53
发表于 2025-3-21 16:14:05 | 显示全部楼层 |阅读模式
书目名称Sublinear Computation Paradigm
副标题Algorithmic Revoluti
编辑Naoki Katoh,Yuya Higashikawa,Yushi Uno
视频video
概述Provides the concept of sublinear computation paradigm.Discusses the innovative algorithms, data structures, and modeling techniques for big data.This is an Open Access book.Includes applications to r
图书封面Titlebook: Sublinear Computation Paradigm; Algorithmic Revoluti Naoki Katoh,Yuya Higashikawa,Yushi Uno Book‘‘‘‘‘‘‘‘ 2022 The Editor(s) (if applicable)
描述This open access book gives an overview of cutting-edge work on a new paradigm called the “sublinear computation paradigm,” which was proposed in the large multiyear academic research project “Foundations of Innovative Algorithms for Big Data.” That project ran from October 2014 to March 2020, in Japan. To handle the unprecedented explosion of big data sets in research, industry, and other areas of society, there is an urgent need to develop novel methods and approaches for big data analysis. To meet this need, innovative changes in algorithm theory for big data are being pursued. For example, polynomial-time algorithms have thus far been regarded as “fast,” but if a quadratic-time algorithm is applied to a petabyte-scale or larger big data set, problems are encountered in terms of computational resources or running time. To deal with this critical computational and algorithmic bottleneck, linear, sublinear, and constant time algorithms are required..The sublinear computation paradigm is proposed here in order to support innovation in the big data era. A foundation of innovative algorithms has been created by developing computational procedures, data structures, and modelling techn
出版日期Book‘‘‘‘‘‘‘‘ 2022
关键词Sublinear Algorithms; polynomial time algorithms; Constant-Time Algorithms; Sublinear Computation Parad
版次1
doihttps://doi.org/10.1007/978-981-16-4095-7
isbn_softcover978-981-16-4097-1
isbn_ebook978-981-16-4095-7
copyrightThe Editor(s) (if applicable) and The Author(s) 2022
The information of publication is updating

书目名称Sublinear Computation Paradigm影响因子(影响力)




书目名称Sublinear Computation Paradigm影响因子(影响力)学科排名




书目名称Sublinear Computation Paradigm网络公开度




书目名称Sublinear Computation Paradigm网络公开度学科排名




书目名称Sublinear Computation Paradigm被引频次




书目名称Sublinear Computation Paradigm被引频次学科排名




书目名称Sublinear Computation Paradigm年度引用




书目名称Sublinear Computation Paradigm年度引用学科排名




书目名称Sublinear Computation Paradigm读者反馈




书目名称Sublinear Computation Paradigm读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:10:16 | 显示全部楼层
发表于 2025-3-22 00:32:25 | 显示全部楼层
Structural and Functional Analysis of Proteins Using Rigidity Theoryand how these macromolecules carry out their complex functions. The mechanical heterogeneity of protein structures and a delicate mix of rigidity and flexibility, which dictates their dynamic nature, is linked to their highly diverse biological functions. Mathematical rigidity theory and related alg
发表于 2025-3-22 08:20:45 | 显示全部楼层
Book‘‘‘‘‘‘‘‘ 2022k, linear, sublinear, and constant time algorithms are required..The sublinear computation paradigm is proposed here in order to support innovation in the big data era. A foundation of innovative algorithms has been created by developing computational procedures, data structures, and modelling techn
发表于 2025-3-22 12:18:00 | 显示全部楼层
发表于 2025-3-22 14:46:38 | 显示全部楼层
Takuya Kida,Isamu Furuyauation procedure for regulating GW contamination by pesticides and their degradates is used, and this has recently been updated; the revision not only utilizes computer simulations of predicted environmental concentrations to determine if the 0.1 ppb trigger level is exceeded, but also relies on dat
发表于 2025-3-22 20:00:29 | 显示全部楼层
发表于 2025-3-22 23:34:33 | 显示全部楼层
Anthony C. C. Coolen,Theodore Nikoletopoulos,Shunta Arai,Kazuyuki Tanaka
发表于 2025-3-23 02:19:54 | 显示全部楼层
发表于 2025-3-23 07:43:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 22:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表