找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Structural, Syntactic, and Statistical Pattern Recognition; Joint IAPR Internati Pasi Fränti,Gavin Brown,Marcello Pelillo Conference procee

[复制链接]
查看: 44909|回复: 62
发表于 2025-3-21 18:46:44 | 显示全部楼层 |阅读模式
书目名称Structural, Syntactic, and Statistical Pattern Recognition
副标题Joint IAPR Internati
编辑Pasi Fränti,Gavin Brown,Marcello Pelillo
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Structural, Syntactic, and Statistical Pattern Recognition; Joint IAPR Internati Pasi Fränti,Gavin Brown,Marcello Pelillo Conference procee
描述This book constitutes the proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, S+SSPR 2014; comprising the International Workshop on Structural and Syntactic Pattern Recognition, SSPR, and the International Workshop on Statistical Techniques in Pattern Recognition, SPR. The total of 25 full papers and 22 poster papers included in this book were carefully reviewed and selected from 78 submissions. They are organized in topical sections named: graph kernels; clustering; graph edit distance; graph models and embedding; discriminant analysis; combining and selecting; joint session; metrics and dissimilarities; applications; partial supervision; and poster session.
出版日期Conference proceedings 2014
关键词complex network; genetic algorithms; graph theory; kernel methods; modeling; multimedia analysis; neural n
版次1
doihttps://doi.org/10.1007/978-3-662-44415-3
isbn_softcover978-3-662-44414-6
isbn_ebook978-3-662-44415-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag GmbH Germany, part of Springer Nature 2014
The information of publication is updating

书目名称Structural, Syntactic, and Statistical Pattern Recognition影响因子(影响力)




书目名称Structural, Syntactic, and Statistical Pattern Recognition影响因子(影响力)学科排名




书目名称Structural, Syntactic, and Statistical Pattern Recognition网络公开度




书目名称Structural, Syntactic, and Statistical Pattern Recognition网络公开度学科排名




书目名称Structural, Syntactic, and Statistical Pattern Recognition被引频次




书目名称Structural, Syntactic, and Statistical Pattern Recognition被引频次学科排名




书目名称Structural, Syntactic, and Statistical Pattern Recognition年度引用




书目名称Structural, Syntactic, and Statistical Pattern Recognition年度引用学科排名




书目名称Structural, Syntactic, and Statistical Pattern Recognition读者反馈




书目名称Structural, Syntactic, and Statistical Pattern Recognition读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:08:34 | 显示全部楼层
Improving Approximate Graph Edit Distance Using Genetic Algorithmsint, we implement a search procedure based on a genetic algorithm in order to improve the approximation quality. In an experimental evaluation on three real world data sets a substantial gain of distance accuracy is empirically verified.
发表于 2025-3-22 03:08:17 | 显示全部楼层
发表于 2025-3-22 06:03:13 | 显示全部楼层
Node Centrality for Continuous-Time Quantum Walksly defined quantum states. We investigate how the importance varies as we change the initial state of the walk and the Hamiltonian of the system. We find that, for a suitable combination of the two, the importance of a vertex is almost linearly correlated with its degree. Finally, we evaluate the proposed measure on two commonly used networks.
发表于 2025-3-22 10:50:11 | 显示全部楼层
Max-Correlation Embedding Computation the incidence mapping of the graph. We illustrate the utility of the method for purposes of approximating the colour sensitivity functions of a set of over 20 commercially available digital cameras using a library of spectral reflectance measurements.
发表于 2025-3-22 14:15:46 | 显示全部楼层
发表于 2025-3-22 20:57:44 | 显示全部楼层
A Graph Kernel from the Depth-Based Representations of high dimensional depth-based complexity information. Based on the new representation, we establish a possible correspondence between vertices of two graphs that allows us to construct a matching-based graph kernel. Experiments on graphs from computer vision datasets demonstrate the effectiveness of our kernel.
发表于 2025-3-22 21:27:05 | 显示全部楼层
发表于 2025-3-23 04:43:30 | 显示全部楼层
发表于 2025-3-23 07:13:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 00:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表