找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Structural, Syntactic, and Statistical Pattern Recognition; Joint IAPR Internati Antonio Robles-Kelly,Marco Loog,Richard Wilson Conference

[复制链接]
查看: 51217|回复: 54
发表于 2025-3-21 19:34:49 | 显示全部楼层 |阅读模式
书目名称Structural, Syntactic, and Statistical Pattern Recognition
副标题Joint IAPR Internati
编辑Antonio Robles-Kelly,Marco Loog,Richard Wilson
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Structural, Syntactic, and Statistical Pattern Recognition; Joint IAPR Internati Antonio Robles-Kelly,Marco Loog,Richard Wilson Conference
描述.This book constitutes the proceedings of the Joint IAPR International Workshop on Structural Syntactic, and Statistical Pattern Recognition, S+SSPR 2016, consisting of the International Workshop on Structural and Syntactic Pattern Recognition SSPR, and the International Workshop on Statistical Techniques in Pattern Recognition, SPR. The 51 full papers presented were carefully reviewed and selected from 68 submissions. They are organized in the following topical sections: dimensionality reduction, manifold learning and embedding methods; dissimilarity representations; graph-theoretic methods; model selection, classification and clustering; semi and fully supervised learning methods; shape analysis; spatio-temporal pattern recognition; structural matching; text and document analysis. .
出版日期Conference proceedings 2016
关键词complex networks; machine learning; optimization; semantic segmentation; visualization; artificial intell
版次1
doihttps://doi.org/10.1007/978-3-319-49055-7
isbn_softcover978-3-319-49054-0
isbn_ebook978-3-319-49055-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2016
The information of publication is updating

书目名称Structural, Syntactic, and Statistical Pattern Recognition影响因子(影响力)




书目名称Structural, Syntactic, and Statistical Pattern Recognition影响因子(影响力)学科排名




书目名称Structural, Syntactic, and Statistical Pattern Recognition网络公开度




书目名称Structural, Syntactic, and Statistical Pattern Recognition网络公开度学科排名




书目名称Structural, Syntactic, and Statistical Pattern Recognition被引频次




书目名称Structural, Syntactic, and Statistical Pattern Recognition被引频次学科排名




书目名称Structural, Syntactic, and Statistical Pattern Recognition年度引用




书目名称Structural, Syntactic, and Statistical Pattern Recognition年度引用学科排名




书目名称Structural, Syntactic, and Statistical Pattern Recognition读者反馈




书目名称Structural, Syntactic, and Statistical Pattern Recognition读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:29:18 | 显示全部楼层
发表于 2025-3-22 00:30:18 | 显示全部楼层
发表于 2025-3-22 04:52:21 | 显示全部楼层
GriMa: A Grid Mining Algorithm for Bag-of-Grid-Based Classificationuld be beneficial to obtain more discriminative features. Experiments on different datasets show that our algorithm is efficient and that adding the structure may greatly help the image classification process.
发表于 2025-3-22 09:03:21 | 显示全部楼层
发表于 2025-3-22 13:48:59 | 显示全部楼层
Correlation Network Evolution Using Mean Reversion Autoregressionobtain a more meaningful mean reversion term. We show experimentally that the dynamic network model can be used to recover detailed statistical properties of the original network data. More importantly, it also suggests that the model is effective in analyzing the predictability of stock correlation networks.
发表于 2025-3-22 18:07:51 | 显示全部楼层
发表于 2025-3-22 21:17:02 | 显示全部楼层
发表于 2025-3-23 03:10:57 | 显示全部楼层
发表于 2025-3-23 05:46:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-20 14:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表