找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Structural, Syntactic, and Statistical Pattern Recognition; Joint IAPR Internati Adam Krzyzak,Ching Y. Suen,Nicola Nobile Conference procee

[复制链接]
查看: 28879|回复: 66
发表于 2025-3-21 20:05:46 | 显示全部楼层 |阅读模式
书目名称Structural, Syntactic, and Statistical Pattern Recognition
副标题Joint IAPR Internati
编辑Adam Krzyzak,Ching Y. Suen,Nicola Nobile
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Structural, Syntactic, and Statistical Pattern Recognition; Joint IAPR Internati Adam Krzyzak,Ching Y. Suen,Nicola Nobile Conference procee
描述This book constitutes the proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, S+SSPR 2022, held in Montreal, QC, Canada, in August 2022..The 30 papers together with 2 invited talks presented in this volume were carefully reviewed and selected from 50 submissions. The workshops presents papers on topics such as deep learning, processing, computer vision, machine learning and pattern recognition and much more. .
出版日期Conference proceedings 2022
关键词artificial intelligence; computer networks; computer science; computer systems; computer vision; database
版次1
doihttps://doi.org/10.1007/978-3-031-23028-8
isbn_softcover978-3-031-23027-1
isbn_ebook978-3-031-23028-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Structural, Syntactic, and Statistical Pattern Recognition影响因子(影响力)




书目名称Structural, Syntactic, and Statistical Pattern Recognition影响因子(影响力)学科排名




书目名称Structural, Syntactic, and Statistical Pattern Recognition网络公开度




书目名称Structural, Syntactic, and Statistical Pattern Recognition网络公开度学科排名




书目名称Structural, Syntactic, and Statistical Pattern Recognition被引频次




书目名称Structural, Syntactic, and Statistical Pattern Recognition被引频次学科排名




书目名称Structural, Syntactic, and Statistical Pattern Recognition年度引用




书目名称Structural, Syntactic, and Statistical Pattern Recognition年度引用学科排名




书目名称Structural, Syntactic, and Statistical Pattern Recognition读者反馈




书目名称Structural, Syntactic, and Statistical Pattern Recognition读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:12:57 | 显示全部楼层
发表于 2025-3-22 03:35:09 | 显示全部楼层
,Annotation-Free Keyword Spotting in Historical Vietnamese Manuscripts Using Graph Matching,orical Vietnamese manuscripts containing 719 scanned pages of the famous Tale of Kieu. Our results show that search terms can be found with promising precision both when providing handwritten samples (query by example) as well as printed characters (query by string).
发表于 2025-3-22 06:45:22 | 显示全部楼层
发表于 2025-3-22 08:49:02 | 显示全部楼层
Spatio-Temporal United Memory for Video Anomaly Detection,e AUC 96.92%, 87.43%, and 75.42% on UCSD Ped2, Avenue, and ShanghaiTech, respectively. Extensive experiments on three publicly available datasets demonstrate the excellent generalization and high effectiveness of the proposed method.
发表于 2025-3-22 16:56:16 | 显示全部楼层
Self-supervised Out-of-Distribution Detection with Dynamic Latent Scale GAN,ual information of in-distribution data, and additional hyperparameters for prediction. The proposed method showed better out-of-distribution detection performance than the previous state-of-art method.
发表于 2025-3-22 17:43:59 | 显示全部楼层
发表于 2025-3-22 23:53:47 | 显示全部楼层
发表于 2025-3-23 02:22:24 | 显示全部楼层
,Monte Carlo Dropout for Uncertainty Analysis and ECG Trace Image Classification,rld scenarios. We use ECG images dataset of cardiac and covid-19 patients containing five categories of data, which includes COVID-19 ECG records as well as data from other cardiovascular disorders. Our proposed model achieves 93.90% accuracy using this dataset.
发表于 2025-3-23 09:05:55 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 02:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表