找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Structural Wood Detailing in CAD Format; K. A. Zayat Book 1993 Springer Science+Business Media New York 1993 TJI.computer-aided design (CA

[复制链接]
楼主: iniquity
发表于 2025-3-23 09:43:18 | 显示全部楼层
发表于 2025-3-23 17:17:44 | 显示全部楼层
发表于 2025-3-23 18:15:55 | 显示全部楼层
K. A. Zayatiguity, inaccuracy, incompleteness and roughness. Accordingly, many different mathematical models for dealing with these uncertainties, like probability, fuzzy set theory, Dempster-Shafer theory of evidence and rough set theory, have been introduced and also applied with great success in many fields
发表于 2025-3-23 23:13:27 | 显示全部楼层
K. A. Zayatiguity, inaccuracy, incompleteness and roughness. Accordingly, many different mathematical models for dealing with these uncertainties, like probability, fuzzy set theory, Dempster-Shafer theory of evidence and rough set theory, have been introduced and also applied with great success in many fields
发表于 2025-3-24 03:59:53 | 显示全部楼层
发表于 2025-3-24 08:41:42 | 显示全部楼层
发表于 2025-3-24 13:17:26 | 显示全部楼层
if .. ≡ 5 mod 103 has any solutions. Since 5 is not congruent to 3 mod 4, the quadratic reciprocity law asserts that .. ≡ 5 mod 103 and .. ≡ 103 mod 5 are both solvable or both not. But solution of the latter congruence reduces to .. ≡ 3 mod 5, which clearly has no solutions. Hence neither does .. ≡
发表于 2025-3-24 15:15:18 | 显示全部楼层
K. A. Zayat in Sect. . we begin with a discussion of the results from algebraic number theory that will be required, with Dedekind’s Ideal Distribution Theorem as the final goal of this section. The zeta function of an algebraic number field is defined and studied in Sect. .; in particular, the Euler-Dedekind
发表于 2025-3-24 20:17:13 | 显示全部楼层
发表于 2025-3-25 00:56:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 10:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表