找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Structural Reliability; Statistical Learning Jorge E. Hurtado Book 2004 Springer-Verlag Berlin Heidelberg 2004 Chaos.Regression.Stab.Transf

[复制链接]
查看: 7955|回复: 39
发表于 2025-3-21 18:41:53 | 显示全部楼层 |阅读模式
书目名称Structural Reliability
副标题Statistical Learning
编辑Jorge E. Hurtado
视频video
概述Original approach to structural reliability from the perspective of statistical learning theory
丛书名称Lecture Notes in Applied and Computational Mechanics
图书封面Titlebook: Structural Reliability; Statistical Learning Jorge E. Hurtado Book 2004 Springer-Verlag Berlin Heidelberg 2004 Chaos.Regression.Stab.Transf
描述The last decades have witnessed the development of methods for solving struc­ tural reliability problems, which emerged from the efforts of numerous re­ searchers all over the world. For the specific and most common problem of determining the probability of failure of a structural system in which the limit state function g( x) = 0 is only implicitly known, the proposed methods can be grouped into two main categories: • Methods based on the Taylor expansion of the performance function g(x) about the most likely failure point (the design point), which is determined in the solution process. These methods are known as FORM and SORM (First- and Second Order Reliability Methods, respectively). • Monte Carlo methods, which require repeated calls of the numerical (nor­ mally finite element) solver of the structural model using a random real­ ization of the basic variable set x each time. In the first category of methods only SORM can be considered of a wide applicability. However, it requires the knowledge of the first and second deriva­ tives of the performance function, whose calculation in several dimensions either implies a high computational effort when faced with finite difference te
出版日期Book 2004
关键词Chaos; Regression; Stab; Transformation; Vibration; Wavelet; algorithms; classification; complexity; linear o
版次1
doihttps://doi.org/10.1007/978-3-540-40987-8
isbn_softcover978-3-642-53576-5
isbn_ebook978-3-540-40987-8Series ISSN 1613-7736 Series E-ISSN 1860-0816
issn_series 1613-7736
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

书目名称Structural Reliability影响因子(影响力)




书目名称Structural Reliability影响因子(影响力)学科排名




书目名称Structural Reliability网络公开度




书目名称Structural Reliability网络公开度学科排名




书目名称Structural Reliability被引频次




书目名称Structural Reliability被引频次学科排名




书目名称Structural Reliability年度引用




书目名称Structural Reliability年度引用学科排名




书目名称Structural Reliability读者反馈




书目名称Structural Reliability读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:24:40 | 显示全部楼层
发表于 2025-3-22 02:54:55 | 显示全部楼层
A Discussion on Structural Reliability Methods,structure. This first chapter has the aim of demonstrating the relevance of such an approximation from several points of view. The chapter is also a critical discussion of reliability analysis methods published up to date.
发表于 2025-3-22 05:21:47 | 显示全部楼层
发表于 2025-3-22 12:40:33 | 显示全部楼层
发表于 2025-3-22 14:46:24 | 显示全部楼层
发表于 2025-3-22 20:27:07 | 显示全部楼层
发表于 2025-3-22 22:09:48 | 显示全部楼层
Regression Methods,bility of function approximation methods, with special regard to Neural Networks and Support Vector Machines. Three kinds of networks are of interest in this respect: Multi-Layer Perceptrons, Radial Basis Function Networks and Networks with Time-Dependent connections. The use of Support Vector Machi
发表于 2025-3-23 05:24:07 | 显示全部楼层
发表于 2025-3-23 09:03:12 | 显示全部楼层
Book 2004e­ searchers all over the world. For the specific and most common problem of determining the probability of failure of a structural system in which the limit state function g( x) = 0 is only implicitly known, the proposed methods can be grouped into two main categories: • Methods based on the Taylor
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 13:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表