找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Strange Phenomena in Convex and Discrete Geometry; Chuanming Zong,James J. Dudziak Textbook 1996 Springer-Verlag New York, Inc. 1996 Area.

[复制链接]
楼主: 积聚
发表于 2025-3-23 12:54:38 | 显示全部楼层
发表于 2025-3-23 14:37:00 | 显示全部楼层
发表于 2025-3-23 19:30:01 | 显示全部楼层
Local Packing Phenomena,d denote it by .(.). A closely related but contrasting concept is the . of ., denoted .(.), which is the smallest number of nonoverlapping translates of . which are in contact with . and prevent any other translate of . from touching .. Concerning kissing numbers and blocking numbers, one can raise
发表于 2025-3-24 01:17:40 | 显示全部楼层
Category Phenomena,or most. elements of Ii if it holds for all elements of ℜ that lie off a meager subset. In 1899, R. Baire [1] found that every meager subset of a . or a . has a dense complement. So, in a topological sense, meager sets are “small,” whereas their complements are “large.”
发表于 2025-3-24 05:09:07 | 显示全部楼层
The Busemann-Petty Problem,of a convex body can be expressed in terms of the areas of its projections as follows: . Here, .(.) denotes the surface area of a convex body . ⊂ ., . denotes the (. − 1)-dimensional “area” of a set . ⊂ ., . denotes the orthogonal projection from . to the hyperplane . = {. ∈ .: 〈.〉 = 0} determined b
发表于 2025-3-24 06:57:04 | 显示全部楼层
Local Packing Phenomena,of . which are in contact with . and prevent any other translate of . from touching .. Concerning kissing numbers and blocking numbers, one can raise the following intuitive problem:.. . . .. .(. < .(.) .(.) ≤ .(.)?
发表于 2025-3-24 13:22:49 | 显示全部楼层
发表于 2025-3-24 17:59:32 | 显示全部楼层
发表于 2025-3-24 21:55:37 | 显示全部楼层
Chuanming Zong,James J. Dudziaktries (even if likely secondary to significantly different pathogenetic pathways), and its outcomes are bad worldwide [1]: the deadly burden of AKI affects up to 5,000 cases per million people per year and kills up to 50 % of patients requiring renal replacement therapy (RRT) secondary to AKI [2]. A
发表于 2025-3-25 03:09:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-28 02:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表