找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queue; A Volume in Honor of Houmin Yan,Georg

[复制链接]
楼主: 炸弹
发表于 2025-3-26 23:12:28 | 显示全部楼层
发表于 2025-3-27 01:37:14 | 显示全部楼层
发表于 2025-3-27 09:08:19 | 显示全部楼层
Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queue978-0-387-33815-6Series ISSN 0884-8289 Series E-ISSN 2214-7934
发表于 2025-3-27 09:34:56 | 显示全部楼层
Linear Stochastic Equations in a Hilbert Space with a Fractional Brownian Motion,A solution is obtained for a linear stochastic equation in a Hilbert space with a fractional Brownian motion. The Hurst parameter for the fractional Brownian motion is not restricted. Sample path properties of the solution are obtained that depend on the Hurst parameter. An example of a stochastic partial differential equation is given.
发表于 2025-3-27 17:28:13 | 显示全部楼层
发表于 2025-3-27 17:47:07 | 显示全部楼层
发表于 2025-3-27 23:55:33 | 显示全部楼层
https://doi.org/10.1007/0-387-33815-2Manufacturing; Manufacturing System; Optimization Methods; Stochastic Optimization; Stochastic Processes
发表于 2025-3-28 04:30:15 | 显示全部楼层
Characterization of Just in Time Sequencing via Apportionment, renders supply chains more stable and carrying less inventories of final products and components but at the same time it ensures less shortages. A number of algorithms have been proposed in the literature to optimize just in time sequencing. This paper characterizes these algorithms via characteristics developed by the apportionment theory.
发表于 2025-3-28 10:20:16 | 显示全部楼层
ed on a brain -inspired spiking neural network (SNN) architecture. A STAM-SNN is a machine learning model that is trained on a full set of spatio-temporal variables, but can be successfully recalled on only a subset of the variables measured in different time intervals. In addition, a STAM-SNN model
发表于 2025-3-28 13:51:59 | 显示全部楼层
K. E. Avrachenkov,L. D. Finlay,V. G. Gaitsgoryl practices, planning, execution and patient care. This chapter delves into the core aspects of SDS, encompassing phase recognition, image segmentation, Surgical Process Modeling (SPM), and surgical skill assessment, presenting a systematic exploration of the key components: datasets, data acquisiti
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 19:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表