找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Stochastic Processes; A Festschrift in Hon Stamatis Cambanis,Jayanta K. Ghosh,Pranab K. Sen Book 1993 Springer-Verlag New York, Inc. 1993 p

[复制链接]
楼主: 补给线
发表于 2025-3-30 12:14:31 | 显示全部楼层
Overview: This volume celebrates the many contributions which Gopinath Kallianpur has made to probability and statistics. It comprises 40 chapters which taken together survey the wide sweep of ideas which have been influenced by Professor Kallianpur‘s writing and research.978-1-4615-7911-3978-1-4615-7909-0
发表于 2025-3-30 12:33:07 | 显示全部楼层
发表于 2025-3-30 17:39:25 | 显示全部楼层
发表于 2025-3-30 21:02:58 | 显示全部楼层
Zero-One Law for Semigroups of Measures on Groups,Let (μ.)t>0 be a convolution semigroup of probability measures of Poisson type on a complete separable metric abelian group. The purpose of this note is to provide a short and elementary proof of the zero-one law for (μ.)t>0.
发表于 2025-3-31 02:37:23 | 显示全部楼层
发表于 2025-3-31 05:51:37 | 显示全部楼层
发表于 2025-3-31 11:18:01 | 显示全部楼层
,Feynman’s Operational Calculus As A Generalized Path Integral,Feynman’s heuristic prescription for forming functions of noncommuting operators is discussed along with methods for making his ideas rigorous. The emphasis is on one method and on the extent to which Feynman’s operational calculus can be viewed as a generalized path integral.
发表于 2025-3-31 14:49:04 | 显示全部楼层
Forward and Backward Equations for an Adjoint Process,A Markov chain is observed only through a noisy continuous observation process. A related optimal control problem is formulated in separated form by considering the related Zakai equation. An adjoint process is defined and shown to satisfy a forward stochastic partial differential equation, and also a system of backward parabolic equations.
发表于 2025-3-31 20:21:55 | 显示全部楼层
发表于 2025-3-31 22:36:28 | 显示全部楼层
,Sur les Variations des Fonctions Aléatoires Gaussiennes,For vector-valued gaussian random functions, we develop, without separability assumptions, properties of the oscillations and we analyse their asymptotic behaviour.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 02:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表