找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Stochastic Optimal Control in Infinite Dimension; Dynamic Programming Giorgio Fabbri,Fausto Gozzi,Andrzej Święch Book 2017 Springer Intern

[复制链接]
查看: 37913|回复: 35
发表于 2025-3-21 17:33:13 | 显示全部楼层 |阅读模式
书目名称Stochastic Optimal Control in Infinite Dimension
副标题Dynamic Programming
编辑Giorgio Fabbri,Fausto Gozzi,Andrzej Święch
视频video
概述Provides a systematic survey of the main available results, with proofs and references.Gives a complete presentation of the theory of regular and viscosity solutions of second-order HJB equations in i
丛书名称Probability Theory and Stochastic Modelling
图书封面Titlebook: Stochastic Optimal Control in Infinite Dimension; Dynamic Programming  Giorgio Fabbri,Fausto Gozzi,Andrzej Święch Book 2017 Springer Intern
描述.Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs,and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of ope
出版日期Book 2017
关键词49Lxx, 93E20, 49L20, 35R15, 35Q93, 49L25, 65H15, 37L55; stochastic optimal control; infinite dimension
版次1
doihttps://doi.org/10.1007/978-3-319-53067-3
isbn_softcover978-3-319-85053-5
isbn_ebook978-3-319-53067-3Series ISSN 2199-3130 Series E-ISSN 2199-3149
issn_series 2199-3130
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Stochastic Optimal Control in Infinite Dimension影响因子(影响力)




书目名称Stochastic Optimal Control in Infinite Dimension影响因子(影响力)学科排名




书目名称Stochastic Optimal Control in Infinite Dimension网络公开度




书目名称Stochastic Optimal Control in Infinite Dimension网络公开度学科排名




书目名称Stochastic Optimal Control in Infinite Dimension被引频次




书目名称Stochastic Optimal Control in Infinite Dimension被引频次学科排名




书目名称Stochastic Optimal Control in Infinite Dimension年度引用




书目名称Stochastic Optimal Control in Infinite Dimension年度引用学科排名




书目名称Stochastic Optimal Control in Infinite Dimension读者反馈




书目名称Stochastic Optimal Control in Infinite Dimension读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:03:40 | 显示全部楼层
发表于 2025-3-22 04:12:28 | 显示全部楼层
Mild Solutions in Spaces of Continuous Functions, Hilbert spaces through a . which was first introduced in [147, 340] and then improved and developed in various subsequent papers like [89, 90, 306, 307, 317] and later [105, 107, 301, 309, 310, 431–434].
发表于 2025-3-22 05:33:48 | 显示全部楼层
Preliminaries on Stochastic Calculus in Infinite Dimension,We recall some basic notions of measure theory and give a short introduction to random variables and the theory of the Bochner integral.
发表于 2025-3-22 08:54:44 | 显示全部楼层
Optimal Control Problems and Examples,In this chapter we discuss the connection between the study of infinite-dimensional stochastic optimal control problems and that of second-order Hamilton–Jacobi–Bellman (HJB) equations in Hilbert spaces.
发表于 2025-3-22 13:48:59 | 显示全部楼层
Viscosity Solutions,This chapter is devoted to the theory of viscosity solutions of Hamilton–Jacobi–Bellman equations in Hilbert spaces.
发表于 2025-3-22 19:02:25 | 显示全部楼层
发表于 2025-3-22 23:10:16 | 显示全部楼层
HJB Equations Through Backward Stochastic Differential Equations,This last chapter of the book completes the picture of the main methods used to study second-order HJB equations in Hilbert spaces and related optimal control problems by presenting a survey of results that can be achieved with the techniques of Backward SDEs in infinite dimension.
发表于 2025-3-23 01:27:49 | 显示全部楼层
Giorgio Fabbri,Fausto Gozzi,Andrzej ŚwięchProvides a systematic survey of the main available results, with proofs and references.Gives a complete presentation of the theory of regular and viscosity solutions of second-order HJB equations in i
发表于 2025-3-23 09:17:58 | 显示全部楼层
978-3-319-85053-5Springer International Publishing AG 2017
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 03:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表