找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Stochastic Numerics for Mathematical Physics; Grigori N. Milstein,Michael V. Tretyakov Book 2021Latest edition Springer Nature Switzerland

[复制链接]
查看: 43143|回复: 49
发表于 2025-3-21 18:45:27 | 显示全部楼层 |阅读模式
书目名称Stochastic Numerics for Mathematical Physics
编辑Grigori N. Milstein,Michael V. Tretyakov
视频video
概述Provides a rich source of practical algorithms for stochastic differential equations and related PDEs.Gives a solid theoretical foundation for stochastic numerics.Features a new chapter on backward st
丛书名称Scientific Computation
图书封面Titlebook: Stochastic Numerics for Mathematical Physics;  Grigori N. Milstein,Michael V. Tretyakov Book 2021Latest edition Springer Nature Switzerland
描述.This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics..SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are
出版日期Book 2021Latest edition
关键词Stochastic Differential Equations; SDEs; backward SDEs; computing ergodic limits; geometric integration;
版次2
doihttps://doi.org/10.1007/978-3-030-82040-4
isbn_softcover978-3-030-82042-8
isbn_ebook978-3-030-82040-4Series ISSN 1434-8322 Series E-ISSN 2198-2589
issn_series 1434-8322
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Stochastic Numerics for Mathematical Physics影响因子(影响力)




书目名称Stochastic Numerics for Mathematical Physics影响因子(影响力)学科排名




书目名称Stochastic Numerics for Mathematical Physics网络公开度




书目名称Stochastic Numerics for Mathematical Physics网络公开度学科排名




书目名称Stochastic Numerics for Mathematical Physics被引频次




书目名称Stochastic Numerics for Mathematical Physics被引频次学科排名




书目名称Stochastic Numerics for Mathematical Physics年度引用




书目名称Stochastic Numerics for Mathematical Physics年度引用学科排名




书目名称Stochastic Numerics for Mathematical Physics读者反馈




书目名称Stochastic Numerics for Mathematical Physics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:33:54 | 显示全部楼层
发表于 2025-3-22 02:51:29 | 显示全部楼层
发表于 2025-3-22 05:37:41 | 显示全部楼层
发表于 2025-3-22 09:46:10 | 显示全部楼层
发表于 2025-3-22 16:56:46 | 显示全部楼层
Solving FBSDEs Using Layer Methods,oundary value problem for semilinear PDE. Algorithms for FBSDEs with random terminal time are constructed using mean-square approximations of diffusions in bounded domains from Chap. . and layer methods for the Dirichlet problem from Chap. .. The results are supported by numerical experiments.
发表于 2025-3-22 20:58:08 | 显示全部楼层
发表于 2025-3-23 00:58:48 | 显示全部楼层
发表于 2025-3-23 05:20:53 | 显示全部楼层
tute the social identity of human actors. David Graeber argues that what is ultimately being valued are actions and not things. During the Maya Classic period jade objects may have been on the precipice of the transition from esteemed value to measured value because the ideological conceptions of th
发表于 2025-3-23 07:31:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 02:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表