找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Stochastic Models with Power-Law Tails; The Equation X = AX Dariusz Buraczewski,Ewa Damek,Thomas Mikosch Book 2016 Springer International

[复制链接]
查看: 41876|回复: 35
发表于 2025-3-21 18:40:37 | 显示全部楼层 |阅读模式
书目名称Stochastic Models with Power-Law Tails
副标题The Equation X = AX
编辑Dariusz Buraczewski,Ewa Damek,Thomas Mikosch
视频video
概述Covers fields which are not available in book form and are spread over the literature.Provides an accessible introduction to a complicated stochastic model.A readable overview of one of the most compl
丛书名称Springer Series in Operations Research and Financial Engineering
图书封面Titlebook: Stochastic Models with Power-Law Tails; The Equation X = AX  Dariusz Buraczewski,Ewa Damek,Thomas Mikosch Book 2016 Springer International
描述.In this monograph the authors give a systematic approach to the probabilistic properties of the fixed point equation X=AX+B. A probabilistic study of the stochastic recurrence equation X_t=A_tX_{t-1}+B_t for real- and matrix-valued random variables A_t, where (A_t,B_t) constitute an iid sequence, is provided. The classical theory for these equations, including the existence and uniqueness of a stationary solution, the tail behavior with special emphasis on power law behavior, moments and support, is presented. The authors collect recent asymptotic results on extremes, point processes, partial sums (central limit theory with special emphasis on infinite variance stable limit theory), large deviations, in the univariate and multivariate cases, and they further touch on the related topics of smoothing transforms, regularly varying sequences and random iterative systems..The text gives an introduction to the Kesten-Goldie theory for stochastic recurrence equations of the type X_t=A_tX_{t-1}+B_t. It provides the classical results of Kesten, Goldie, Guivarc‘h, and others, and gives an overview of recent results on the topic. It presents the state-of-the-art results in the field of affin
出版日期Book 2016
关键词Power Law Tail; Random Iterative Function System; Stochastic Recurrence Equation; Regular Variation; Kes
版次1
doihttps://doi.org/10.1007/978-3-319-29679-1
isbn_softcover978-3-319-80624-2
isbn_ebook978-3-319-29679-1Series ISSN 1431-8598 Series E-ISSN 2197-1773
issn_series 1431-8598
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

书目名称Stochastic Models with Power-Law Tails影响因子(影响力)




书目名称Stochastic Models with Power-Law Tails影响因子(影响力)学科排名




书目名称Stochastic Models with Power-Law Tails网络公开度




书目名称Stochastic Models with Power-Law Tails网络公开度学科排名




书目名称Stochastic Models with Power-Law Tails被引频次




书目名称Stochastic Models with Power-Law Tails被引频次学科排名




书目名称Stochastic Models with Power-Law Tails年度引用




书目名称Stochastic Models with Power-Law Tails年度引用学科排名




书目名称Stochastic Models with Power-Law Tails读者反馈




书目名称Stochastic Models with Power-Law Tails读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:18:00 | 显示全部楼层
发表于 2025-3-22 00:44:31 | 显示全部楼层
发表于 2025-3-22 08:37:35 | 显示全部楼层
发表于 2025-3-22 11:33:30 | 显示全部楼层
Miscellanea,In this chapter, we collect some overview sections of topics which are closely related to the fixed-point equation.
发表于 2025-3-22 13:45:03 | 显示全部楼层
发表于 2025-3-22 20:49:35 | 显示全部楼层
发表于 2025-3-22 22:11:44 | 显示全部楼层
发表于 2025-3-23 03:05:22 | 显示全部楼层
发表于 2025-3-23 06:02:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 11:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表