找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Stochastic Methods for Modeling and Predicting Complex Dynamical Systems; Uncertainty Quantifi Nan Chen Textbook 2023 The Editor(s) (if app

[复制链接]
楼主: 烤问
发表于 2025-3-23 13:44:30 | 显示全部楼层
Conditional Gaussian Nonlinear Systems,s of nonlinear models, where the joint and marginal distributions can both be highly non-Gaussian, but the conditional distributions of certain variables are Gaussian. The conditional Gaussianity allows using closed analytic formulae to solve nonlinear data assimilation problems that significantly f
发表于 2025-3-23 17:15:34 | 显示全部楼层
Parameter Estimation with Uncertainty Quantification, applied to estimate model parameters utilizing the Metropolis-Hastings algorithm. Next, the expectation-maximization (EM) algorithm is described, aiming to estimate model parameters with partial observations. The EM algorithm alternates between estimating the parameters via maximum likelihood estim
发表于 2025-3-23 18:10:11 | 显示全部楼层
Combining Stochastic Models with Machine Learning,t combine stochastic models with machine learning to advance the understanding and forecast of many complex dynamical systems. Machine learning can serve as the surrogate forecast model in data assimilation to improve the efficiency and accuracy of the ensemble forecast. Reciprocally, data assimilat
发表于 2025-3-23 22:33:56 | 显示全部楼层
Data Assimilation,and applications of these methods are discussed. The continuous version of the Kalman filter, namely the Kalman-Bucy filter, and other data assimilation techniques, such as the smoother, and their applications are briefly studied at the end of this chapter.
发表于 2025-3-24 06:08:07 | 显示全部楼层
发表于 2025-3-24 10:12:50 | 显示全部楼层
发表于 2025-3-24 11:33:17 | 显示全部楼层
发表于 2025-3-24 17:51:43 | 显示全部楼层
978-3-031-22251-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-24 19:51:04 | 显示全部楼层
发表于 2025-3-25 00:09:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 07:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表