找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Stochastic Differential Systems; Proceedings of the 3 Norbert Christopeit,Kurt Helmes,Michael Kohlmann Conference proceedings 1986 Springer

[复制链接]
查看: 29062|回复: 62
发表于 2025-3-21 18:22:46 | 显示全部楼层 |阅读模式
书目名称Stochastic Differential Systems
副标题Proceedings of the 3
编辑Norbert Christopeit,Kurt Helmes,Michael Kohlmann
视频video
丛书名称Lecture Notes in Control and Information Sciences
图书封面Titlebook: Stochastic Differential Systems; Proceedings of the 3 Norbert Christopeit,Kurt Helmes,Michael Kohlmann Conference proceedings 1986 Springer
出版日期Conference proceedings 1986
关键词Tracking; control; filtering; optimal control; programming; stability
版次1
doihttps://doi.org/10.1007/BFb0041147
isbn_softcover978-3-540-16228-5
isbn_ebook978-3-540-39767-0Series ISSN 0170-8643 Series E-ISSN 1610-7411
issn_series 0170-8643
copyrightSpringer-Verlag Berlin Heidelberg 1986
The information of publication is updating

书目名称Stochastic Differential Systems影响因子(影响力)




书目名称Stochastic Differential Systems影响因子(影响力)学科排名




书目名称Stochastic Differential Systems网络公开度




书目名称Stochastic Differential Systems网络公开度学科排名




书目名称Stochastic Differential Systems被引频次




书目名称Stochastic Differential Systems被引频次学科排名




书目名称Stochastic Differential Systems年度引用




书目名称Stochastic Differential Systems年度引用学科排名




书目名称Stochastic Differential Systems读者反馈




书目名称Stochastic Differential Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:18:13 | 显示全部楼层
发表于 2025-3-22 02:12:55 | 显示全部楼层
Stochastic maximum principle in the problem of optimal absolutely continuous change of measure,aracterized by a situation when the choice of the control determines the absolutely continuous change of some basic measure. In contrast to the case of diffusion Markov processes ([1], [2]), these equations, generally speaking, are not ordinary differential equations here. We base the derivation on
发表于 2025-3-22 05:20:19 | 显示全部楼层
A solution to the partially observed control problem of linear systems, with non-quadratic cost, a probabilistic manner -by density control method- that the partially observed control problem has a separated optimal policy amongst the admissible controls defined to be all the processes adapted to the observation‘s filtration.
发表于 2025-3-22 10:39:41 | 显示全部楼层
Control of piecewise-deterministic processes via discrete-time dynamic programming,inuous. By considering the sequence of states visited by the process at its jump times, it is shown that a discounted infinite horizon control problem can be reformulated as a discrete-time Markov decision problem (the ‘positive’ case). Under certain continuity assumptions it is shown that an optima
发表于 2025-3-22 14:07:06 | 显示全部楼层
发表于 2025-3-22 18:09:42 | 显示全部楼层
发表于 2025-3-23 01:00:40 | 显示全部楼层
Viscosity solutions in partially observed control,equation and Mortensen‘s equation was revealed. In [1] it was pointed out that the dynamic programming techniques do not give us an existence theorem (- as it would be in the completely observed case -), but it was shown that the value function is a lower bound for the solution of Mortensen‘s equati
发表于 2025-3-23 02:53:24 | 显示全部楼层
发表于 2025-3-23 08:44:34 | 显示全部楼层
Stochastic maximum principle in the problem of optimal absolutely continuous change of measure,a non-linear equation for the martingale component of the value process ([3]) and an expression for the differential of the maximum of the semi-martingales. The method can be also applied to the case with jump components in the martingales defining measure densities, but we shall restrict ourselves by the continuous case.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 20:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表