找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Steinberg Groups for Jordan Pairs; Ottmar Loos,Erhard Neher Book 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019 S

[复制链接]
查看: 46988|回复: 35
发表于 2025-3-21 18:11:20 | 显示全部楼层 |阅读模式
书目名称Steinberg Groups for Jordan Pairs
编辑Ottmar Loos,Erhard Neher
视频video
概述Develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems.Simplifies the case-by-
丛书名称Progress in Mathematics
图书封面Titlebook: Steinberg Groups for Jordan Pairs;  Ottmar Loos,Erhard Neher Book 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019 S
描述The present monograph develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems..The development of this approach occurs over six chapters, progressing from groups with commutator relations and their Steinberg groups, then on to Jordan pairs, 3-graded locally finite root systems, and groups associated with Jordan pairs graded by root systems, before exploring the volume‘s main focus: the definition of the Steinberg group of a root graded Jordan pair by a small set of relations, and its central closedness. Several original concepts, such as the notions of Jordan graphs and Weyl elements, provide readers with the necessary tools from combinatorics and group theory..Steinberg Groups for Jordan Pairs. is ideal for PhD students and researchers in the fields of elementary groups, Steinberg groups, Jordanalgebras, and Jordan pairs. By adopting a unified approach, anybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential..
出版日期Book 2019
关键词Steinberg groups; Jordan pairs; Weyl group; Elementary groups; Jordan algebras; Idempotents; Graph theory
版次1
doihttps://doi.org/10.1007/978-1-0716-0264-5
isbn_ebook978-1-0716-0264-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media, LLC, part of Springer Nature 2019
The information of publication is updating

书目名称Steinberg Groups for Jordan Pairs影响因子(影响力)




书目名称Steinberg Groups for Jordan Pairs影响因子(影响力)学科排名




书目名称Steinberg Groups for Jordan Pairs网络公开度




书目名称Steinberg Groups for Jordan Pairs网络公开度学科排名




书目名称Steinberg Groups for Jordan Pairs被引频次




书目名称Steinberg Groups for Jordan Pairs被引频次学科排名




书目名称Steinberg Groups for Jordan Pairs年度引用




书目名称Steinberg Groups for Jordan Pairs年度引用学科排名




书目名称Steinberg Groups for Jordan Pairs读者反馈




书目名称Steinberg Groups for Jordan Pairs读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:29:51 | 显示全部楼层
发表于 2025-3-22 01:24:56 | 显示全部楼层
Groups With Commutator Relations,he usual sense and with a view towards later applications, we base at least part of the theory on “sets in free abelian groups”, that is, pairs (.) consisting of a free abelian group . and a subset . of . generating . and containing 0. With an obvious definition of morphisms, they form a category ..
发表于 2025-3-22 05:18:51 | 显示全部楼层
发表于 2025-3-22 12:47:49 | 显示全部楼层
0743-1643 ybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential..978-1-0716-0264-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-22 14:39:44 | 显示全部楼层
发表于 2025-3-22 18:10:00 | 显示全部楼层
Groups With Commutator Relations,he usual sense and with a view towards later applications, we base at least part of the theory on “sets in free abelian groups”, that is, pairs (.) consisting of a free abelian group . and a subset . of . generating . and containing 0. With an obvious definition of morphisms, they form a category ..
发表于 2025-3-22 22:56:19 | 显示全部楼层
Groups Associated With Jordan Pairs, we give a leisurely introduction to Jordan pairs in 6. In particular, we present the most important examples, and introduce fundamental notions, such as quasi-invertible pairs and the inner automorphisms defined by them, idempotents and their Peirce decompositions.
发表于 2025-3-23 02:17:16 | 显示全部楼层
Springer Science+Business Media, LLC, part of Springer Nature 2019
发表于 2025-3-23 07:33:36 | 显示全部楼层
Steinberg Groups for Jordan Pairs978-1-0716-0264-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 11:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表