找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Network Analysis: Models, Issues, and New Directions; ICML 2006 Workshop o Edoardo Airoldi,David M. Blei,Alice X. Zheng Confere

[复制链接]
楼主: 债权人
发表于 2025-3-25 06:59:03 | 显示全部楼层
发表于 2025-3-25 07:53:42 | 显示全部楼层
Combining Stochastic Block Models and Mixed Membership for Statistical Network Analysisto examine two data sets. (1) a collection of sociometric relations among monks is used to investigate the crisis that took place in a monastery [2], and (2) data from a school-based longitudinal study of the health-related behaviors of adolescents. Both data sets have recently been reanalyzed in [3
发表于 2025-3-25 13:41:10 | 显示全部楼层
Learning Approximate MRFs from Large Transactional Dataperimental results). Translated into the social network domain, this is the problem of computing the likelihood of seeing a particular combination of grocery items in the market basket domain, or the probability of a group of professors coauthoring a paper in a co-authorship network, etc. This margi
发表于 2025-3-25 16:14:30 | 显示全部楼层
0302-9743 e in particular deserve special recognition. Anna Goldenberg and Alice Zheng were the driving force behind the entire enterprise and Edo Airoldi assisted on a number of the more important arrangements.978-3-540-73132-0978-3-540-73133-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-25 23:48:18 | 显示全部楼层
发表于 2025-3-26 00:52:59 | 显示全部楼层
发表于 2025-3-26 07:10:23 | 显示全部楼层
发表于 2025-3-26 11:13:42 | 显示全部楼层
https://doi.org/10.1007/978-3-540-73133-7Online; calculus; distributed networks; dynamical networks; evolving networks; genetic algorithms; graph d
发表于 2025-3-26 13:07:51 | 显示全部楼层
Discrete Temporal Models of Social NetworksGMs). Many of the methods for ERGMs are readily adapted for these models, including MCMC maximum likelihood estimation algorithms. We discuss models of this type and give examples, as well as a demonstration of their use for hypothesis testing and classification.
发表于 2025-3-26 17:16:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 11:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表