找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Models and Methods for Data Science; Leonardo Grilli,Monia Lupparelli,Maurizio Vichi Conference proceedings 2023 The Editor(s)

[复制链接]
楼主: Ejaculation
发表于 2025-3-28 17:10:40 | 显示全部楼层
A Study of Lack-of-Fit Diagnostics for Models Fit to Cross-Classified Binary Variables,. The extended . statistic is obtained by decomposing the Pearson statistic from the full table into orthogonal components defined on marginal distributions. The extended version of the statistic, ., can be applied to a variety of models for cross-classified tables. Simulation results show that . ha
发表于 2025-3-28 21:26:15 | 显示全部楼层
发表于 2025-3-29 00:18:39 | 显示全部楼层
发表于 2025-3-29 06:50:01 | 显示全部楼层
Parsimonious Mixtures of Matrix-Variate Shifted Exponential Normal Distributions,lly high number of parameters to be estimated. Thus, in this work we introduce a family of 196 parsimonious mixture models based on the matrix-variate shifted exponential normal distribution, an elliptical heavy-tailed generalization of the matrix-variate normal distribution. Parsimony is introduced
发表于 2025-3-29 10:58:58 | 显示全部楼层
发表于 2025-3-29 14:00:52 | 显示全部楼层
发表于 2025-3-29 16:15:11 | 显示全部楼层
发表于 2025-3-29 20:21:13 | 显示全部楼层
1431-8814 ing, and cyber risk.Fosters new directions of research in cl.This book focuses on methods and models in classification and data analysis and presents real-world applications at the interface with data science. Numerous topics are covered, ranging from statistical inference and modelling to clusterin
发表于 2025-3-30 00:43:24 | 显示全部楼层
发表于 2025-3-30 05:58:52 | 显示全部楼层
Parsimonious Mixtures of Matrix-Variate Shifted Exponential Normal Distributions,nious matrix-variate normal mixtures, thus allowing for a better modeling of datasets having atypical observations. Parameter estimation is obtained by using an ECM algorithm. The proposed models are then fitted to a real dataset along with parsimonious matrix-variate normal mixtures for comparison purposes.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 14:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表