找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Modeling Using Bayesian Latent Gaussian Models; With Applications in Birgir Hrafnkelsson Book 2023 Springer Nature Switzerland

[复制链接]
楼主: Anagram
发表于 2025-3-25 05:20:53 | 显示全部楼层
发表于 2025-3-25 07:58:36 | 显示全部楼层
发表于 2025-3-25 15:05:53 | 显示全部楼层
Joshua Lovegrove,Stefan Siegerte.Clear and concise text.Includes supplementary material: Emergency care of pediatric orthopedic surgical emergencies is often provided by orthopedic surgeons who primarily treat adults. Pediatric Orthopedic Surgical Emergencies is designed to provide the essential information needed to safely evalu
发表于 2025-3-25 17:47:38 | 显示全部楼层
发表于 2025-3-25 23:02:29 | 显示全部楼层
Bayesian Latent Gaussian Models,long with methods to infer the parameters of these models. The construction of prior densities for the latent parameters and the hyperparameters is described. Several examples are given to demonstrate how to apply models from these subclasses to real datasets.
发表于 2025-3-26 03:51:48 | 显示全部楼层
Improving Numerical Weather Forecasts by Bayesian Hierarchical Modelling,istical postprocessing methodology. In particular, we show that after fitting postprocessing parameters at each grid point by maximum likelihood estimation, a spatial smoothing of the parameter estimates is justified in a Bayesian hierarchical modelling context and offers improvements of out-of-sample forecasts.
发表于 2025-3-26 05:47:33 | 显示全部楼层
Bayesian Latent Gaussian Models,esent three subclasses within the class of Bayesian latent Gaussian models, namely, Bayesian Gaussian–Gaussian models, Bayesian latent Gaussian models with a univariate link function, and Bayesian latent Gaussian models with a multivariate link function. The structure of each subclass is described a
发表于 2025-3-26 10:22:20 | 显示全部楼层
发表于 2025-3-26 15:26:03 | 显示全部楼层
发表于 2025-3-26 19:48:26 | 显示全部楼层
Bayesian Modeling in Engineering Seismology: Ground-Motion Models,nt variables such as earthquake magnitude, distance from the earthquake, site effects, and more. The empirical GMM is expressed as a simple mathematical equation containing regression parameters to be inferred through a calibration of the model to a given dataset. Engineering seismologists strive fo
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 06:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表