找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Matching; A Frequentist Theory Susanne Rässler Book 2002 Springer Science+Business Media New York 2002 Area.Erlang.Fusion.Outlo

[复制链接]
查看: 45349|回复: 37
发表于 2025-3-21 16:33:36 | 显示全部楼层 |阅读模式
书目名称Statistical Matching
副标题A Frequentist Theory
编辑Susanne Rässler
视频video
丛书名称Lecture Notes in Statistics
图书封面Titlebook: Statistical Matching; A Frequentist Theory Susanne Rässler Book 2002 Springer Science+Business Media New York 2002 Area.Erlang.Fusion.Outlo
描述Data fusion or statistical file matching techniques merge data sets from different survey samples to solve the problem that exists when no single file contains all the variables of interest. Media agencies are merging television and purchasing data, statistical offices match tax information with income surveys. Many traditional applications are known but information about these procedures is often difficult to achieve. The author proposes the use of multiple imputation (MI) techniques using informative prior distributions to overcome the conditional independence assumption. By means of MI sensitivity of the unconditional association of the variables not jointy observed can be displayed. An application of the alternative approaches with real world data concludes the book.
出版日期Book 2002
关键词Area; Erlang; Fusion; Outlook; Simula; data analysis; database; distribution; evaluation; history of mathemat
版次1
doihttps://doi.org/10.1007/978-1-4613-0053-3
isbn_softcover978-0-387-95516-2
isbn_ebook978-1-4613-0053-3Series ISSN 0930-0325 Series E-ISSN 2197-7186
issn_series 0930-0325
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

书目名称Statistical Matching影响因子(影响力)




书目名称Statistical Matching影响因子(影响力)学科排名




书目名称Statistical Matching网络公开度




书目名称Statistical Matching网络公开度学科排名




书目名称Statistical Matching被引频次




书目名称Statistical Matching被引频次学科排名




书目名称Statistical Matching年度引用




书目名称Statistical Matching年度引用学科排名




书目名称Statistical Matching读者反馈




书目名称Statistical Matching读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:34:33 | 显示全部楼层
https://doi.org/10.1007/978-1-4613-0053-3Area; Erlang; Fusion; Outlook; Simula; data analysis; database; distribution; evaluation; history of mathemat
发表于 2025-3-22 02:19:08 | 显示全部楼层
发表于 2025-3-22 07:38:05 | 显示全部楼层
发表于 2025-3-22 09:42:56 | 显示全部楼层
Frequentist Theory of Statistical Matching,. In particular, the associations between variables never jointly observed are specified in such a completed data set. In this chapter we show whether a statistically matched file may be analyzed as if it were a single sample.
发表于 2025-3-22 15:24:18 | 显示全部楼层
发表于 2025-3-22 20:45:16 | 显示全部楼层
Synopsis and Outlook,arate files. We show that the validity of the traditional matching techniques concerning the preservation of the true association of the variables never jointly observed depends on the explanatory power of the common variables. Following an approach published by Rubin (1987) we propose the use of mu
发表于 2025-3-23 00:05:48 | 显示全部楼层
Introduction,ractical statisticians about the power of matching techniques. This is reported, e.g., by Moriarity and Scheuren (2001), Judkins (1998), Gabler (1997), Bennike (1987), Rodgers (1984), Woodbury (1983), and Sims (1972a and b). On the other hand, famous statistical offices such as Statistics Canada as
发表于 2025-3-23 02:06:14 | 显示全部楼层
Frequentist Theory of Statistical Matching,. In particular, the associations between variables never jointly observed are specified in such a completed data set. In this chapter we show whether a statistically matched file may be analyzed as if it were a single sample.
发表于 2025-3-23 07:19:09 | 显示全部楼层
Practical Applications of Statistical Matching,ften they are difficult to obtain if available at all. Most of the reports or articles published are less theoretical; details about the final matching algorithms are often best explained in private talks or at conferences. No comprehensive work addressing new and recently used matching techniques i
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 22:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表