找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Learning from a Regression Perspective; Richard A. Berk Textbook 20162nd edition Springer Nature Switzerland AG 2016 classific

[复制链接]
楼主: Grievous
发表于 2025-3-28 15:08:51 | 显示全部楼层
Bagging,nts, measures of it, residuals, classifications and others. Ensemble methods make many passes through the data after which the results are combined. One immediate benefit can be estimates with better out-of-sample performance. The statistical learning procedure called “bagging” is where we start.
发表于 2025-3-28 20:48:39 | 显示全部楼层
Boosting,ore flexible. A much wider range of response variables types are can be used, all within the same basic algorithmic structure. Just as for random forests, there are several useful ways to study the output, and excellent software exists within R.
发表于 2025-3-29 01:08:52 | 显示全部楼层
发表于 2025-3-29 03:28:23 | 显示全部楼层
发表于 2025-3-29 09:51:48 | 显示全部楼层
978-3-319-82969-2Springer Nature Switzerland AG 2016
发表于 2025-3-29 11:35:21 | 显示全部楼层
Statistical Learning from a Regression Perspective978-3-319-44048-4Series ISSN 1431-875X Series E-ISSN 2197-4136
发表于 2025-3-29 16:52:13 | 显示全部楼层
Random Forests,In the last chapter some of the weaknesses of bagging were discussed. In this chapter, random forests is introduced in part to address these weaknesses. Random forests is a legitimate and very useful statistical learning procedure that can be successfully used in practice.
发表于 2025-3-29 23:48:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 22:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表