找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Learning from a Regression Perspective; Richard A. Berk Book 20081st edition Springer Science+Business Media, LLC 2008 Fitting

[复制链接]
查看: 32587|回复: 35
发表于 2025-3-21 18:59:16 | 显示全部楼层 |阅读模式
书目名称Statistical Learning from a Regression Perspective
编辑Richard A. Berk
视频video
概述Accessible discussion of statistical learning procedures for practitioners.Lots of real applications discussed.Intuitive explanations and visual representation of underlying statistical concepts
丛书名称Springer Series in Statistics
图书封面Titlebook: Statistical Learning from a Regression Perspective;  Richard A. Berk Book 20081st edition Springer Science+Business Media, LLC 2008 Fitting
描述.Statistical Learning from a Regression Perspective considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this is can be seen as an extension of nonparametric regression. Among the statistical learning procedures examined are bagging, random forests, boosting, and support vector machines. Response variables may be quantitative or categorical. . .Real applications are emphasized, especially those with practical implications. One important theme is the need to explicitly take into account asymmetric costs in the fitting process. For example, in some situations false positives may be far less costly than false negatives. Another important theme is to not automatically cede modeling decisions to a fitting algorithm. In many settings, subject-matter knowledge should trump formal fitting criteria. Yet another important theme is to appreciate the limitation of one’s data and not apply statistical learning procedures that require more than the data can provide. . .The material is w
出版日期Book 20081st edition
关键词Fitting; bagging; boosting; classification; random forests; statistical learning; support vector machines
版次1
doihttps://doi.org/10.1007/978-0-387-77501-2
isbn_ebook978-0-387-77501-2Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer Science+Business Media, LLC 2008
The information of publication is updating

书目名称Statistical Learning from a Regression Perspective影响因子(影响力)




书目名称Statistical Learning from a Regression Perspective影响因子(影响力)学科排名




书目名称Statistical Learning from a Regression Perspective网络公开度




书目名称Statistical Learning from a Regression Perspective网络公开度学科排名




书目名称Statistical Learning from a Regression Perspective被引频次




书目名称Statistical Learning from a Regression Perspective被引频次学科排名




书目名称Statistical Learning from a Regression Perspective年度引用




书目名称Statistical Learning from a Regression Perspective年度引用学科排名




书目名称Statistical Learning from a Regression Perspective读者反馈




书目名称Statistical Learning from a Regression Perspective读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:22:06 | 显示全部楼层
https://doi.org/10.1007/978-0-387-77501-2Fitting; bagging; boosting; classification; random forests; statistical learning; support vector machines
发表于 2025-3-22 03:32:51 | 显示全部楼层
发表于 2025-3-22 07:20:20 | 显示全部楼层
发表于 2025-3-22 11:00:07 | 显示全部楼层
Richard A. BerkAccessible discussion of statistical learning procedures for practitioners.Lots of real applications discussed.Intuitive explanations and visual representation of underlying statistical concepts
发表于 2025-3-22 13:49:08 | 显示全部楼层
发表于 2025-3-22 19:04:15 | 显示全部楼层
发表于 2025-3-22 21:36:47 | 显示全部楼层
发表于 2025-3-23 04:41:22 | 显示全部楼层
发表于 2025-3-23 07:44:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 23:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表