找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Inference Under Mixture Models; Jiahua Chen Book 2023 Springer Nature Singapore Pte Ltd. 2023 EM-algorithm.EM-test.Hypothesis

[复制链接]
楼主: 猛烈抨击
发表于 2025-3-28 16:15:43 | 显示全部楼层
-Test for Homogeneity,using EM-iterations from the best-fitted null model in a specific manner. This chapter introduces the concept and the conclusions related to the simple homogeneity case, with the more complex scenarios addressed in the subsequent chapter. It unveils the somewhat more intricate technical advantages of this approach.
发表于 2025-3-28 22:20:37 | 显示全部楼层
发表于 2025-3-29 00:11:08 | 显示全部楼层
发表于 2025-3-29 06:53:19 | 显示全部楼层
发表于 2025-3-29 10:51:10 | 显示全部楼层
Estimation Under Finite Normal Mixture Models,characteristics. Notably, the general finite normal mixture model boasts an unbounded likelihood function, rendering the straightforward maximum likelihood estimator of the mixing distribution inconsistent. However, in the case of the univariate normal mixture with a structured scale parameter, the
发表于 2025-3-29 14:26:11 | 显示全部楼层
Consistent Estimation Under Finite Gamma Mixture,thin this framework is unbounded, theoretically leading to an inconsistent maximum likelihood estimator. However, it is worth noting that, in practice, this inconsistency rarely manifests in data analysis. Nevertheless, this chapter provides an in-depth exploration of the development of a consistent
发表于 2025-3-29 17:27:32 | 显示全部楼层
Geometric Properties of Non-parametric MLE and Numerical Solutions,enge arises from the infinite dimension of the nonparametric space, making the resulting optimization problem seem insurmountable. However, the nonparametric maximum likelihood estimator is known to have finite support, meaning it assigns positive probabilities to a finite set of mixing parameter va
发表于 2025-3-29 22:33:20 | 显示全部楼层
发表于 2025-3-30 01:12:49 | 显示全部楼层
发表于 2025-3-30 07:07:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 23:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表