找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Field Theory for Neural Networks; Moritz Helias,David Dahmen Book 2020 Springer Nature Switzerland AG 2020 Statistical physics

[复制链接]
查看: 33846|回复: 51
发表于 2025-3-21 19:13:34 | 显示全部楼层 |阅读模式
书目名称Statistical Field Theory for Neural Networks
编辑Moritz Helias,David Dahmen
视频video
概述Provides the first self-contained introduction to field theory for neuronal networks.Presents the main concepts from field theory that are relevant for network dynamics, including diagrammatic techniq
丛书名称Lecture Notes in Physics
图书封面Titlebook: Statistical Field Theory for Neural Networks;  Moritz Helias,David Dahmen Book 2020 Springer Nature Switzerland AG 2020 Statistical physics
描述.This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. ..This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra..
出版日期Book 2020
关键词Statistical physics; Neuronal networks; Dynamic mean-field theory; Diagrammatic techniques; Chaotic netw
版次1
doihttps://doi.org/10.1007/978-3-030-46444-8
isbn_softcover978-3-030-46443-1
isbn_ebook978-3-030-46444-8Series ISSN 0075-8450 Series E-ISSN 1616-6361
issn_series 0075-8450
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Statistical Field Theory for Neural Networks影响因子(影响力)




书目名称Statistical Field Theory for Neural Networks影响因子(影响力)学科排名




书目名称Statistical Field Theory for Neural Networks网络公开度




书目名称Statistical Field Theory for Neural Networks网络公开度学科排名




书目名称Statistical Field Theory for Neural Networks被引频次




书目名称Statistical Field Theory for Neural Networks被引频次学科排名




书目名称Statistical Field Theory for Neural Networks年度引用




书目名称Statistical Field Theory for Neural Networks年度引用学科排名




书目名称Statistical Field Theory for Neural Networks读者反馈




书目名称Statistical Field Theory for Neural Networks读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:48:27 | 显示全部楼层
发表于 2025-3-22 02:11:57 | 显示全部楼层
Moritz Helias,David DahmenProvides the first self-contained introduction to field theory for neuronal networks.Presents the main concepts from field theory that are relevant for network dynamics, including diagrammatic techniq
发表于 2025-3-22 08:32:33 | 显示全部楼层
978-3-030-46443-1Springer Nature Switzerland AG 2020
发表于 2025-3-22 10:47:58 | 显示全部楼层
发表于 2025-3-22 15:21:24 | 显示全部楼层
发表于 2025-3-22 20:25:08 | 显示全部楼层
发表于 2025-3-22 22:16:47 | 显示全部楼层
Probabilities, Moments, Cumulants,the cumulant-generating function. It, correspondingly, introduces moments and cumulants and their mutual connections. These definitions are key to the subsequent concepts, such as the perturbative computation of statistics.
发表于 2025-3-23 02:04:29 | 显示全部楼层
Loopwise Expansion in the MSRDJ Formalism,al, introduced in Chap. .. This will allow us to obtain self-consistent solutions for the mean of the process including fluctuation corrections. It also enables the efficient computation of higher order cumulants of the process by decomposing them into vertex functions, as introduced in Chap. ..
发表于 2025-3-23 08:08:32 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 08:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表