找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges; 11th International W Esther Puyol Anton,Mihaela Pop,

[复制链接]
楼主: satisficer
发表于 2025-3-25 04:17:15 | 显示全部楼层
https://doi.org/10.1007/978-3-030-68107-4artificial intelligence; cardiac imaging; computer modelling; computer vision; CT; deep learning; electro-
发表于 2025-3-25 08:35:39 | 显示全部楼层
发表于 2025-3-25 13:48:15 | 显示全部楼层
Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges978-3-030-68107-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-25 16:23:47 | 显示全部楼层
Measure Anatomical Thickness from Cardiac MRI with Deep Neural Networksthout iterative solvers or manual correction, which is . faster than the mathematical model. We also analyze thickness patterns on different cardiac pathologies with a standard clinical model and the results demonstrate the potential clinical value of our method for thickness based cardiac disease diagnosis.
发表于 2025-3-25 20:53:19 | 显示全部楼层
发表于 2025-3-26 01:26:02 | 显示全部楼层
PIEMAP: Personalized Inverse Eikonal Model from Cardiac Electro-Anatomical Maps named ., performed robustly with synthetic data and showed promising results with clinical data. These results suggest that . could be a useful supplement in future clinical workflowss of personalized therapies.
发表于 2025-3-26 05:29:16 | 显示全部楼层
发表于 2025-3-26 09:31:18 | 显示全部楼层
发表于 2025-3-26 13:21:28 | 显示全部楼层
发表于 2025-3-26 18:12:58 | 显示全部楼层
A Cartesian Grid Representation of Left Atrial Appendages for a Deep Learning Estimation of Thrombogs built from patient-specific data. Some deep learning architectures, such as Fully Connected Networks (FCN), have demonstrated potential in accelerating CFD simulations, determining the relation between object geometry and model outcomes after finding correspondences with classical surface registra
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 19:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表