找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Starting with the Unit Circle; Background to Higher Loo-keng Hua Textbook 1981 Springer-Verlag New York Inc. 1981 Fourier series.Harmonisch

[复制链接]
楼主: whiplash
发表于 2025-3-25 06:15:22 | 显示全部楼层
Formal Fourier Series and Generalized Functions,We have already more than once mentioned the result that, given a converging Fourier series . there exists on the unit disc a harmonic function . Conversely, suppose (2) converges for all . satisfying 0 ⩽ ρ < 1, we then say that (1) defines a .. Since a harmonic function is infinitely differentiable, then so is a generalized function.
发表于 2025-3-25 08:30:21 | 显示全部楼层
978-1-4613-8138-9Springer-Verlag New York Inc. 1981
发表于 2025-3-25 12:08:59 | 显示全部楼层
发表于 2025-3-25 19:01:19 | 显示全部楼层
https://doi.org/10.1007/978-1-4613-8136-5Fourier series; Harmonische Analyse; Logarithmus; calculus; convergence; differential equation; differenti
发表于 2025-3-25 22:06:48 | 显示全部楼层
The Geometric Theory of Harmonic Functions,ormation (1) transforms the unit circle ∣z∣ = 1 into the unit circle ∣w∣ = 1, the disc ∣z∣ < 1 is transformed into the unit disc ∣w∣ < 1. Transformation (2) also has its property. Furthermore, transformation (1) transforms . = . into . = 0.
发表于 2025-3-26 00:58:01 | 显示全部楼层
发表于 2025-3-26 06:46:21 | 显示全部楼层
发表于 2025-3-26 11:44:05 | 显示全部楼层
Cabazitaxel for the Treatment of Prostate Cancer,ation resistant prostate cancer (CRPC) have recently expanded, with cabazitaxel being the first in a new wave of agents to show an improvement in overall survival (OS). This taxane derivative shares many properties with docetaxel; however, there are several important differences, most notably the pr
发表于 2025-3-26 16:36:09 | 显示全部楼层
发表于 2025-3-26 18:20:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 14:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表