找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Stable Klingen Vectors and Paramodular Newforms; Jennifer Johnson-Leung,Brooks Roberts,Ralf Schmidt Book 2023 The Editor(s) (if applicable

[复制链接]
楼主: 万能
发表于 2025-3-23 11:52:43 | 显示全部楼层
发表于 2025-3-23 17:48:45 | 显示全部楼层
Book 2023have connections with the theory of automorphic representations and the Langlands program, Galois representations, the arithmetic of abelian surfaces, and algorithmic number theory. Providing a useful standard source on the subject, the book will be of interest to graduate students and researchers working in the above fields..
发表于 2025-3-23 21:50:20 | 显示全部楼层
发表于 2025-3-23 23:08:56 | 显示全部楼层
0075-8434 r coefficients and Hecke eigenvalues of paramodular newformsThis book describes a novel approach to the study of Siegel modular forms of degree two with paramodular level. It introduces the family of stable Klingen congruence subgroups of GSp(4) and uses this family to obtain new relations between t
发表于 2025-3-24 04:49:27 | 显示全部楼层
Book 2023ngen congruence subgroups of GSp(4) and uses this family to obtain new relations between the Hecke eigenvalues and Fourier coefficients of paramodular newforms, revealing a fundamental dichotomy for paramodular representations. Among other important results, it includes a complete description of the
发表于 2025-3-24 07:31:06 | 显示全部楼层
发表于 2025-3-24 14:09:13 | 显示全部楼层
发表于 2025-3-24 16:19:35 | 显示全部楼层
发表于 2025-3-24 19:09:29 | 显示全部楼层
BackgroundIn this chapter we recall some essential definitions and results concerning the group . over a nonarchimedean local field of characteristic zero and its representation theory. We also review the theory of paramodular vectors.
发表于 2025-3-25 00:54:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-7 07:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表