找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Stable Homotopy Theory; Lectures delivered a J. Frank Adams Book 19641st edition Springer-Verlag Berlin Heidelberg 1964 Division.Homologica

[复制链接]
查看: 6378|回复: 35
发表于 2025-3-21 17:38:05 | 显示全部楼层 |阅读模式
书目名称Stable Homotopy Theory
副标题Lectures delivered a
编辑J. Frank Adams
视频video
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Stable Homotopy Theory; Lectures delivered a J. Frank Adams Book 19641st edition Springer-Verlag Berlin Heidelberg 1964 Division.Homologica
描述Before I get down to the business of exposition, I‘d like to offer a little motivation. I want to show that there are one or two places in homotopy theory where we strongly suspect that there is something systematic going on, but where we are not yet sure what the system is. The first question concerns the stable J-homomorphism. I recall that this is a homomorphism J: ~ (SQ) ~ ~S = ~ + (Sn), n large. r r r n It is of interest to the differential topologists. Since Bott, we know that ~ (SO) is periodic with period 8: r 6 8 r = 1 2 3 4 5 7 9· . · Z o o o z On the other hand, ~S is not known, but we can nevertheless r ask about the behavior of J. The differential topologists prove: 2 Th~~: If I‘ = ~ - 1, so that ‘IT"r(SO) ~ 2, then J(‘IT"r(SO)) = 2m where m is a multiple of the denominator of ~/4k th (l. being in the Pc Bepnoulli numher.) Conject~~: The above result is best possible, i.e. J(‘IT"r(SO)) = 2m where m 1s exactly this denominator. status of conJectuI‘e ~ No proof in sight. Q9njecture Eo If I‘ = 8k or 8k + 1, so that ‘IT"r(SO) = Z2‘ then J(‘IT"r(SO)) = 2 , 2 status of conjecture: Probably provable, but this is work in progl‘ess.
出版日期Book 19641st edition
关键词Division; Homological algebra; Homotopie; Homotopy; Morphism; behavior; homomorphism; homotopy theory; proof
版次1
doihttps://doi.org/10.1007/978-3-662-15942-2
isbn_ebook978-3-662-15942-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1964
The information of publication is updating

书目名称Stable Homotopy Theory影响因子(影响力)




书目名称Stable Homotopy Theory影响因子(影响力)学科排名




书目名称Stable Homotopy Theory网络公开度




书目名称Stable Homotopy Theory网络公开度学科排名




书目名称Stable Homotopy Theory被引频次




书目名称Stable Homotopy Theory被引频次学科排名




书目名称Stable Homotopy Theory年度引用




书目名称Stable Homotopy Theory年度引用学科排名




书目名称Stable Homotopy Theory读者反馈




书目名称Stable Homotopy Theory读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:28:35 | 显示全部楼层
J. Frank Adams een passieve leefstijl. Daar staat echter tegenover dat in bepaalde takken van sport gemakkelijk blessures ontstaan. Bij ‘bovenhandse sporten‘ zoals tennis, volleybal en zwemmen bestaat er risico op overbelasting van de schouder. Bij contactsporten zoals voetbal, ijshockey en rugby ziet men eerder
发表于 2025-3-22 04:26:34 | 显示全部楼层
发表于 2025-3-22 05:36:40 | 显示全部楼层
发表于 2025-3-22 12:26:14 | 显示全部楼层
发表于 2025-3-22 14:35:16 | 显示全部楼层
J. Frank Adamset ziekteproces geconfronteerd met kankerpatiënten. Het incidentiecijfer is voor de huisarts belangrijk, omdat dit aangeeft hoe groot de kans is dat een patiënt met een bepaald type kanker zich aanbiedt in de praktijk. Ongeveer 42 % van deze patiënten overlijdt ten gevolge van kanker. Deze cijfers h
发表于 2025-3-22 18:15:53 | 显示全部楼层
发表于 2025-3-22 22:51:24 | 显示全部楼层
发表于 2025-3-23 02:42:21 | 显示全部楼层
发表于 2025-3-23 07:45:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 05:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表