找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Stable Convergence and Stable Limit Theorems; Erich Häusler,Harald Luschgy Book 2015 Springer International Publishing Switzerland 2015 60

[复制链接]
查看: 24353|回复: 42
发表于 2025-3-21 20:01:24 | 显示全部楼层 |阅读模式
书目名称Stable Convergence and Stable Limit Theorems
编辑Erich Häusler,Harald Luschgy
视频video
概述First monograph entirely devoted to the subject of stable convergence.Presents a clear and sound introduction to the field.Includes examples of successful applications and exercise sets with solutions
丛书名称Probability Theory and Stochastic Modelling
图书封面Titlebook: Stable Convergence and Stable Limit Theorems;  Erich Häusler,Harald Luschgy Book 2015 Springer International Publishing Switzerland 2015 60
描述The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master‘s level with a solid knowledge of measure theoretic probability.
出版日期Book 2015
关键词60-02, 60F05, 60F17; Gauss kernels; limit theorems; mixing convergence of random variables; stable conve
版次1
doihttps://doi.org/10.1007/978-3-319-18329-9
isbn_softcover978-3-319-36519-0
isbn_ebook978-3-319-18329-9Series ISSN 2199-3130 Series E-ISSN 2199-3149
issn_series 2199-3130
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Stable Convergence and Stable Limit Theorems影响因子(影响力)




书目名称Stable Convergence and Stable Limit Theorems影响因子(影响力)学科排名




书目名称Stable Convergence and Stable Limit Theorems网络公开度




书目名称Stable Convergence and Stable Limit Theorems网络公开度学科排名




书目名称Stable Convergence and Stable Limit Theorems被引频次




书目名称Stable Convergence and Stable Limit Theorems被引频次学科排名




书目名称Stable Convergence and Stable Limit Theorems年度引用




书目名称Stable Convergence and Stable Limit Theorems年度引用学科排名




书目名称Stable Convergence and Stable Limit Theorems读者反馈




书目名称Stable Convergence and Stable Limit Theorems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:43:06 | 显示全部楼层
Book 2015s of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution.
发表于 2025-3-22 01:03:21 | 显示全部楼层
发表于 2025-3-22 06:30:08 | 显示全部楼层
发表于 2025-3-22 10:13:16 | 显示全部楼层
发表于 2025-3-22 16:42:51 | 显示全部楼层
发表于 2025-3-22 20:55:21 | 显示全部楼层
发表于 2025-3-23 00:04:17 | 显示全部楼层
Weak Convergence of Markov Kernels,As indicated in the previous chapter, stable convergence of random variables can be seen as suitable convergence of Markov kernels given by conditional distributions. The required facts from the theory of weak convergence of Markov kernels will be presented in this chapter.
发表于 2025-3-23 03:54:06 | 显示全部楼层
Stable Convergence of Random Variables,Based on the notions and results of Chap. . we may now introduce and deeply investigate the mode of stable convergence of random variables.
发表于 2025-3-23 08:12:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 09:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表