找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Spline Functions; Proceedings of an In Klaus Böhmer,Günter Meinardus,Walter Schempp Conference proceedings 1976 Springer-Verlag Berlin Heid

[复制链接]
楼主: morphology
发表于 2025-3-30 09:58:12 | 显示全部楼层
he constraints could be non-convex, and could even be several nonconnected feasible regions..An algorithm is developed which consists of two phases, a “minimization phase” which finds a local constrained minimum and a “tunnelling phase” whose starting point is the local minimum just found, and where
发表于 2025-3-30 13:37:27 | 显示全部楼层
发表于 2025-3-30 17:14:15 | 显示全部楼层
On the relations between finite differences and derivatives of cardinal spline functions, s. denotes the k-th derivative of s (k=0,1,2,...,m−1). Using the shift operator E, we represent this relation in a simple form, involving the exponential Euler polynomials. The results are applied to cardinal spline interpolation.
发表于 2025-3-30 23:10:46 | 显示全部楼层
发表于 2025-3-31 01:52:47 | 显示全部楼层
Discrete polynomial spline approximation methods,fined as piecewise polynomials where the ties between each polynomial piece involve continuity of differences instead of derivatives. We study discrete analogs of local spline approximations, least squares spline approximations, and even order spline interpolation at knots. Error bounds involving di
发表于 2025-3-31 07:34:34 | 显示全部楼层
On the relations between finite differences and derivatives of cardinal spline functions,ionship between the 2m+2 quantities s(i+x), s(i+1+x),...,s(i+m+x), s.(i+y), s.(i+1+y),...,s.(i+m+y), where x,y ∈ [0,1], i=0,±1,±2,... s ∈ S. and where s. denotes the k-th derivative of s (k=0,1,2,...,m−1). Using the shift operator E, we represent this relation in a simple form, involving the exponen
发表于 2025-3-31 10:36:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 13:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表