找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Spinors in Four-Dimensional Spaces; Gerardo F. Torres del Castillo Book 2010 Birkhäuser Boston 2010 Conformal Curvature.Curvature Spinors.

[复制链接]
查看: 46464|回复: 35
发表于 2025-3-21 16:23:46 | 显示全部楼层 |阅读模式
书目名称Spinors in Four-Dimensional Spaces
编辑Gerardo F. Torres del Castillo
视频video
概述Systematic, coherent exposition throughout.Introductory treatment of spinors, requiring no previous knowledge of spinors or advanced knowledge of Lie groups.Includes a detailed bibliography and index.
丛书名称Progress in Mathematical Physics
图书封面Titlebook: Spinors in Four-Dimensional Spaces;  Gerardo F. Torres del Castillo Book 2010 Birkhäuser Boston 2010 Conformal Curvature.Curvature Spinors.
描述Without using the customary Clifford algebras frequently studied in connection with the representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimensional spinors, such as Yang–Mills theory, are derived in detail using illustrative examples...Key topics and features:.• Uniform treatment of the spinor formalism for four-dimensional spaces of any signature, not only the usual signature (+ + + −) employed in relativity.• Examples taken from Riemannian geometry and special or general relativity are.discussed in detail, emphasizing the usefulness of the two-component spinor formalism.• Exercises in each chapter.• The relationship of Clifford algebras and Dirac four-component spinors is established.• Applications of the two-component formalism, focusing mainly on general relativity, are.presented in the context of actual computations...Spinors in Four-Dimensional Spaces. is aimed at graduate students and researchers in mathematical and theoretical physics interested in the applications of the two-component spinor formalism in any four-dim
出版日期Book 2010
关键词Conformal Curvature; Curvature Spinors; Dirac Spinors; Einstein’s Equations; Killing Bispinors; Potential
版次1
doihttps://doi.org/10.1007/978-0-8176-4984-5
isbn_ebook978-0-8176-4984-5Series ISSN 1544-9998 Series E-ISSN 2197-1846
issn_series 1544-9998
copyrightBirkhäuser Boston 2010
The information of publication is updating

书目名称Spinors in Four-Dimensional Spaces影响因子(影响力)




书目名称Spinors in Four-Dimensional Spaces影响因子(影响力)学科排名




书目名称Spinors in Four-Dimensional Spaces网络公开度




书目名称Spinors in Four-Dimensional Spaces网络公开度学科排名




书目名称Spinors in Four-Dimensional Spaces被引频次




书目名称Spinors in Four-Dimensional Spaces被引频次学科排名




书目名称Spinors in Four-Dimensional Spaces年度引用




书目名称Spinors in Four-Dimensional Spaces年度引用学科排名




书目名称Spinors in Four-Dimensional Spaces读者反馈




书目名称Spinors in Four-Dimensional Spaces读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:12:29 | 显示全部楼层
发表于 2025-3-22 00:37:17 | 显示全部楼层
发表于 2025-3-22 06:47:15 | 显示全部楼层
https://doi.org/10.1007/978-0-8176-4984-5Conformal Curvature; Curvature Spinors; Dirac Spinors; Einstein’s Equations; Killing Bispinors; Potential
发表于 2025-3-22 12:01:10 | 显示全部楼层
Birkhäuser Boston 2010
发表于 2025-3-22 16:39:16 | 显示全部楼层
Spinors in Four-Dimensional Spaces978-0-8176-4984-5Series ISSN 1544-9998 Series E-ISSN 2197-1846
发表于 2025-3-22 20:58:12 | 显示全部楼层
Gerardo F. Torres del CastilloSystematic, coherent exposition throughout.Introductory treatment of spinors, requiring no previous knowledge of spinors or advanced knowledge of Lie groups.Includes a detailed bibliography and index.
发表于 2025-3-23 00:00:17 | 显示全部楼层
Book 2010 focusing mainly on general relativity, are.presented in the context of actual computations...Spinors in Four-Dimensional Spaces. is aimed at graduate students and researchers in mathematical and theoretical physics interested in the applications of the two-component spinor formalism in any four-dim
发表于 2025-3-23 04:34:32 | 显示全部楼层
发表于 2025-3-23 07:49:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 23:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表