书目名称 | Spectral Theory of Ordinary Differential Operators |
编辑 | Joachim Weidmann |
视频video | |
丛书名称 | Lecture Notes in Mathematics |
图书封面 |  |
描述 | These notes will be useful and of interest to mathematicians and physicists active in research as well as for students with some knowledge of the abstract theory of operators in Hilbert spaces. They give a complete spectral theory for ordinary differential expressions of arbitrary order n operating on -valued functions existence and construction of self-adjoint realizations via boundary conditions, determination and study of general properties of the resolvent, spectral representation and spectral resolution. Special attention is paid to the question of separated boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case nm=2 (Sturm-Liouville operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including the spectral theory one partical Schrödinger and Dirac operators with spherically symmetric potentials. The methods of proof are functionally analytic wherever possible. |
出版日期 | Book 1987 |
关键词 | Dirac operator; Hilbert space; differential equation; maximum; minimum |
版次 | 1 |
doi | https://doi.org/10.1007/BFb0077960 |
isbn_softcover | 978-3-540-17902-3 |
isbn_ebook | 978-3-540-47912-3Series ISSN 0075-8434 Series E-ISSN 1617-9692 |
issn_series | 0075-8434 |
copyright | Springer-Verlag Berlin Heidelberg 1987 |