找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Spectral Theory of Differential Operators; Self-Adjoint Differe V. A. Il’in Book 1995 Consultants Bureau, New York 1995 calculus.differenti

[复制链接]
查看: 41952|回复: 35
发表于 2025-3-21 19:41:12 | 显示全部楼层 |阅读模式
书目名称Spectral Theory of Differential Operators
副标题Self-Adjoint Differe
编辑V. A. Il’in
视频video
图书封面Titlebook: Spectral Theory of Differential Operators; Self-Adjoint Differe V. A. Il’in Book 1995 Consultants Bureau, New York 1995 calculus.differenti
描述In this fully-illustrated textbook, the author examines thespectral theory of self-adjoint elliptic operators. Chapters focus ontheproblems of convergence and summability of spectraldecompositionsabout the fundamental functions of elliptic operatorsof the secondorder. The author‘s work offers a novel method forestimation of theremainder term of a spectral function and its Rieszmeans withoutrecourse to the traditional Carleman technique andTauberian theoremapparatus.
出版日期Book 1995
关键词calculus; differential operator; function; proof; spectral theory; theorem; variable; ordinary differential
版次1
doihttps://doi.org/10.1007/978-1-4615-1755-9
isbn_ebook978-1-4615-1755-9
copyrightConsultants Bureau, New York 1995
The information of publication is updating

书目名称Spectral Theory of Differential Operators影响因子(影响力)




书目名称Spectral Theory of Differential Operators影响因子(影响力)学科排名




书目名称Spectral Theory of Differential Operators网络公开度




书目名称Spectral Theory of Differential Operators网络公开度学科排名




书目名称Spectral Theory of Differential Operators被引频次




书目名称Spectral Theory of Differential Operators被引频次学科排名




书目名称Spectral Theory of Differential Operators年度引用




书目名称Spectral Theory of Differential Operators年度引用学科排名




书目名称Spectral Theory of Differential Operators读者反馈




书目名称Spectral Theory of Differential Operators读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:31:54 | 显示全部楼层
https://doi.org/10.1007/978-1-4615-1755-9calculus; differential operator; function; proof; spectral theory; theorem; variable; ordinary differential
发表于 2025-3-22 01:31:12 | 显示全部楼层
Consultants Bureau, New York 1995
发表于 2025-3-22 08:36:28 | 显示全部楼层
Spectral Decompositions Corresponding to an Arbitrary Self-Adjoint Nonnegative Extension of the LapIn this chapter we establish exact conditions for the convergence of the spectral decompositions corresponding to an arbitrary self-adjoint nonnegative extension of the Laplace operator in the domain . (not necessarily a bounded one) of the space ..
发表于 2025-3-22 09:01:21 | 显示全部楼层
Self-Adjoint Nonnegative Extensions of an Elliptic Operator of Second Order,that have been established by us in Chapter 2 for an arbitrary self-adjoint nonnegative extension of the Laplace operator remain valid also for arbitrary self-adjoint nonnegative extensions of a general elliptic operator of second order ..
发表于 2025-3-22 14:39:40 | 显示全部楼层
Book 1995ence and summability of spectraldecompositionsabout the fundamental functions of elliptic operatorsof the secondorder. The author‘s work offers a novel method forestimation of theremainder term of a spectral function and its Rieszmeans withoutrecourse to the traditional Carleman technique andTauberian theoremapparatus.
发表于 2025-3-22 18:41:18 | 显示全部楼层
发表于 2025-3-23 01:00:49 | 显示全部楼层
Expansion in the Fundamental System of Functions of the Laplace Operator,lems for the Laplace operator; for such systems, the spectrum is a pure point spectrum, admitting of an infinite multiplicity and every where dense set of limit points for the eigenvalues — quite a realistic situation, as we shall see later.
发表于 2025-3-23 02:42:28 | 显示全部楼层
发表于 2025-3-23 05:39:56 | 显示全部楼层
On the Riesz Equisummability of Spectral Decompositions in the Classical and the Generalized Sense,on an arbitrary compact set . of domain .) tendency to zero of the difference of the Riesz means of order . of the spectral decompositions of this function which correspond to two arbitrary self-adjoint nonnegative extensions of the Laplace operator (in domain ., or in a domain to which . is interior).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 14:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表