找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Special Functions 2000: Current Perspective and Future Directions; Joaquin Bustoz,Mourad E. H. Ismail,Sergei K. Suslo Book 2001 Kluwer Aca

[复制链接]
楼主: BID
发表于 2025-3-30 09:28:19 | 显示全部楼层
发表于 2025-3-30 14:31:10 | 显示全部楼层
发表于 2025-3-30 19:34:56 | 显示全部楼层
Uniform Asymptotic Expansions,niform asymptotic expansion of the Hermite polynomial .. Next, I present a modification of the method of Chester, Friedman and Ursell, which can handle situations where two saddle points may coalesce at . distinct locations. Such situations occur in the cases of Meixner, Meixner-Pollaczek, and Krawtchouk polynomials.
发表于 2025-3-31 00:20:44 | 显示全部楼层
发表于 2025-3-31 02:22:15 | 显示全部楼层
发表于 2025-3-31 05:32:11 | 显示全部楼层
1568-2609 mials and special functions in one andseveral variables, asymptotic, continued fractions, applications tonumber theory, combinatorics and mathematical physics, integrablesystems, harmonic analysis and quantum groups, Painlevéclassification.978-0-7923-7120-5978-94-010-0818-1Series ISSN 1568-2609
发表于 2025-3-31 09:46:14 | 显示全部楼层
发表于 2025-3-31 15:22:58 | 显示全部楼层
Special Functions Defined by Analytic Difference Equations, the generalized hypergeometric function we introduced in recent years, emphasizing the four second order Askey-Wilson type difference equations it satisfies. Our results on trigonometric, elliptic and hyperbolic generalizations of the Hurwitz zeta function are presented here for the first time.
发表于 2025-3-31 20:01:01 | 显示全部楼层
Book 2001theory, review the accomplishments of pastdecades, and chart directions for future research. Some of the topicscovered are orthogonal polynomials and special functions in one andseveral variables, asymptotic, continued fractions, applications tonumber theory, combinatorics and mathematical physics,
发表于 2025-4-1 00:31:18 | 显示全部楼层
Riemann-Hilbert Problems for Multiple Orthogonal Polynomials,n extremal problem for vector potentials is important for the normalization of the Riemann-Hilbert problem. This extremal problem also describes the zero behavior of the multiple orthogonal polynomials.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 01:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表