找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data; Second International Stanley Durrleman,Tom Fletcher,Marc Nietha

[复制链接]
查看: 39996|回复: 53
发表于 2025-3-21 19:36:22 | 显示全部楼层 |阅读模式
书目名称Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data
副标题Second International
编辑Stanley Durrleman,Tom Fletcher,Marc Niethammer
视频video
概述Up-to-date results.Fast-track conference proceedings.State-of-the-art research
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data; Second International Stanley Durrleman,Tom Fletcher,Marc Nietha
描述This book constitutes the refereed proceedings of the Second International Workshop on Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data, STIA 2012, held in conjunction with MICCAI 2012 in Nice, France, in October 2012. The 13 papers presented in this volume were carefully reviewed and selected from 22 submissions. They are organized in topical sections named: longitudinal registration and transport; spatio-temporal analysis for shapes; spatio-temporal analysis under appearance changes; and spatio-temporal analysis for biology.
出版日期Conference proceedings 2012
关键词MRI; brain imaging; hypergraphs; predictive modeling; statistical data analysis; algorithm analysis and p
版次1
doihttps://doi.org/10.1007/978-3-642-33555-6
isbn_softcover978-3-642-33554-9
isbn_ebook978-3-642-33555-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

书目名称Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data影响因子(影响力)




书目名称Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data影响因子(影响力)学科排名




书目名称Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data网络公开度




书目名称Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data网络公开度学科排名




书目名称Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data被引频次




书目名称Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data被引频次学科排名




书目名称Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data年度引用




书目名称Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data年度引用学科排名




书目名称Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data读者反馈




书目名称Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:24:23 | 显示全部楼层
Local vs Global Descriptors of Hippocampus Shape Evolution for Alzheimer’s Longitudinal Population AFinally, as local descriptors transported to this template do not directly perform as well as global descriptors (e.g. volume difference), we propose a novel strategy combining the use of initial momentum from geodesic shooting, extended Kärcher algorithm, density transport and integration on a hipp
发表于 2025-3-22 01:09:00 | 显示全部楼层
Which Reorientation Framework for the Atlas-Based Comparison of Motion from Cardiac Image Sequences?ew from 71 healthy volunteers. Experiments highlight the limitations of the . scheme, showing that the intra-subject transformation should be taken into account, and discuss the options to perform the inter-subject one.
发表于 2025-3-22 05:38:51 | 显示全部楼层
发表于 2025-3-22 10:25:35 | 显示全部楼层
4D Segmentation of Longitudinal Brain MR Images with Consistent Cortical Thickness Measurement on BLSA dataset and ADNI dataset. Both qualitative and quantitative experimental results demonstrate the accuracy and consistency of the proposed method, in comparison to other state-of-the-art 4D segmentation methods.
发表于 2025-3-22 15:42:18 | 显示全部楼层
Spatial-temporal Pharmacokinetic Model Based Registration of 4D Brain PET Datathe tracer kinetics, suggesting a successful registration. Our new method which incorporates a generic tracer kinetic model could be applied widely to dynamic PET data as part of an automated tool to remove motion artefacts and increase the integrity and statistical power of these data.
发表于 2025-3-22 19:51:49 | 显示全部楼层
发表于 2025-3-22 21:59:52 | 显示全部楼层
发表于 2025-3-23 04:28:03 | 显示全部楼层
发表于 2025-3-23 08:35:11 | 显示全部楼层
Li Wang,Feng Shi,Gang Li,Dinggang Shen innovation but, I would like to add in full agreement with him, the most essential. Without successful research innovation is not possible at all; but neither research and invention nor any other step in an innovation procedure can be left out. Our philosophy is to keep researchers involved until t
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 02:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表