找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Solving the Pell Equation; Michael J. Jacobson,Hugh C. Williams Textbook 20091st edition Springer-Verlag New York 2009 algebra.algebraic n

[复制链接]
楼主: 欺骗某人
发表于 2025-3-26 21:31:03 | 显示全部楼层
Conclusion,t general form of a quadratic Diophantine equation in two variables and, as such, represents a further generalization of the Pell equation.. A method for solving this equation was given over 200 years ago by Lagrange,. and this method has not been improved significantly since that time. The reason f
发表于 2025-3-27 02:08:15 | 显示全部楼层
Introduction,and some are even made aware of the additional solutions (5, 12, 13) and (8, 15, 17). In fact, as we shall see below, there exists an infinitude of distinct integral solutions of (1.1) for which (.) = 1.
发表于 2025-3-27 08:45:20 | 显示全部楼层
发表于 2025-3-27 12:48:17 | 显示全部楼层
发表于 2025-3-27 17:03:18 | 显示全部楼层
发表于 2025-3-27 19:31:28 | 显示全部楼层
发表于 2025-3-28 01:11:00 | 显示全部楼层
Some Computational Techniques,mber and regulator are intimately connected to .(1, χ) via the analytic class number formula (Corollary 8.35.1), and in Chapter 9 methods for efficiently computing estimates of . or . using the analytic class number formula were discussed.
发表于 2025-3-28 05:57:10 | 显示全部楼层
发表于 2025-3-28 06:21:59 | 显示全部楼层
Michael J. Jacobson Jr.,Hugh C. Williamst etc. are comprehensively discussed and explained. The book will appeal to teachers, researchers and students involved in igneous and metamorphic petrology..978-981-10-9223-7978-981-10-0666-1Series ISSN 2366-1585 Series E-ISSN 2366-1593
发表于 2025-3-28 13:04:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 03:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表