找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Solving Ordinary Differential Equations II; Stiff and Differenti Ernst Hairer,Gerhard Wanner Book 1996Latest edition Springer-Verlag Berlin

[复制链接]
楼主: 相持不下
发表于 2025-3-25 03:33:17 | 显示全部楼层
Extrapolation Methodsthe idea of extrapolation can also be used for stiff problems. We shall use the results of Sect. I1.8 for the existence of asymptotic expansions and apply them to the study of those implicit and linearly implicit methods, which seem to be most suitable for the computation of stiff differential equat
发表于 2025-3-25 11:08:02 | 显示全部楼层
Contractivity for Linear Problems6) of Sect. IV.2). Especially for large-dimensional problems, however, the matrix which performs this transformation may be badly conditioned and destroy all the nice estimations which have been obtained.
发表于 2025-3-25 13:50:23 | 显示全部楼层
发表于 2025-3-25 16:59:19 | 显示全部楼层
Book 1996Latest edition years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential algebraic equations. It contains three chapters: Chapter IV on one-step (Runge-Kutta) meth­ ods
发表于 2025-3-25 22:25:12 | 显示全部楼层
Springer Series in Computational Mathematicshttp://image.papertrans.cn/s/image/871797.jpg
发表于 2025-3-26 01:03:22 | 显示全部楼层
https://doi.org/10.1007/978-3-642-05221-7Differential-algebraic systems; Differentialgeichung; Numerical analysis; Numerik; Ordinary differential
发表于 2025-3-26 04:20:32 | 显示全部楼层
Examples of Stiff EquationsStiff equations are problems for which explicit methods don’t work. Curtiss & Hirschfelder (1952) explain stiffness on one-dimensional examples such as
发表于 2025-3-26 11:21:03 | 显示全部楼层
发表于 2025-3-26 14:28:37 | 显示全部楼层
Implementation of Implicit Runge-Kutta MethodsIf the dimension of the differential equation . = .(.) is ., then the . -stage fully implicit Runge-Kutta method (3.1) involves a . -dimensional nonlinear system for the unknowns .., ... , ... An efficient solution of this system is the main problem in the implementation of an implicit Runge-Kutta method.
发表于 2025-3-26 19:56:03 | 显示全部楼层
Numerical ExperimentsAfter having seen so many different methods and ideas in the foregoing sections, it is legitimate to study how all these theoretical properties pay off in numerical efficiency.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 13:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表