找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Solutions of Laplace’s Equation; D. R. Bland Book 1961 D. R. Bland 1961 Finite.behavior.derivation.derivative.distribution.equation.evolut

[复制链接]
查看: 30010|回复: 36
发表于 2025-3-21 16:08:24 | 显示全部楼层 |阅读模式
书目名称Solutions of Laplace’s Equation
编辑D. R. Bland
视频videohttp://file.papertrans.cn/872/871736/871736.mp4
丛书名称Library of Mathematics
图书封面Titlebook: Solutions of Laplace’s Equation;  D. R. Bland Book 1961 D. R. Bland 1961 Finite.behavior.derivation.derivative.distribution.equation.evolut
描述THIS book is an introduction both to Laplace‘s equation and its solutions and to a general method of treating partial differential equations. Chapter 1 discusses vector fields and shows how Laplace‘s equation arises for steady fields which are irrotational and solenoidal. In the second chapter the method of separation of variables is introduced and used to reduce each partial differential equation, Laplace‘s equa­ tion in different co-ordinate systems, to three ordinary differential equations. Chapters 3 and 5 are concerned with the solutions of two of these ordinary differential equations, which lead to treatments of Bessel functions and Legendre polynomials. Chapters 4 and 6 show how such solutions are combined to solve particular problems. This general method of approach has been adopted because it can be applied to other scalar and vector fields arising in the physi­ cal sciences; special techniques applicable only to the solu­ tions of Laplace‘s equation have been omitted. In particular generating functions have been relegated to exercises. After mastering the content of this book, the reader will have methods at his disposal to enable him to look for solutions of other partia
出版日期Book 1961
关键词Finite; behavior; derivation; derivative; distribution; equation; evolution; field; form; function; functions;
版次1
doihttps://doi.org/10.1007/978-94-011-7694-1
isbn_softcover978-0-7100-4353-5
isbn_ebook978-94-011-7694-1
copyrightD. R. Bland 1961
The information of publication is updating

书目名称Solutions of Laplace’s Equation影响因子(影响力)




书目名称Solutions of Laplace’s Equation影响因子(影响力)学科排名




书目名称Solutions of Laplace’s Equation网络公开度




书目名称Solutions of Laplace’s Equation网络公开度学科排名




书目名称Solutions of Laplace’s Equation被引频次




书目名称Solutions of Laplace’s Equation被引频次学科排名




书目名称Solutions of Laplace’s Equation年度引用




书目名称Solutions of Laplace’s Equation年度引用学科排名




书目名称Solutions of Laplace’s Equation读者反馈




书目名称Solutions of Laplace’s Equation读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:03:44 | 显示全部楼层
发表于 2025-3-22 00:46:06 | 显示全部楼层
The Method of Separation of Variables,Consider a partial differential equation for . in any number of independent variables, .. The method of separation of variables is used to find solutions of the form ., (16) where . is a function of . only, . a function of . only, . . . and . a function of . only.
发表于 2025-3-22 05:38:42 | 显示全部楼层
发表于 2025-3-22 12:47:07 | 显示全部楼层
Solutions Using Cylindrical Polar Co-ordinates,In chapter 2, section 4, we looked for solutions of Laplace’s equation in cylindrical polar co-ordinates ., ., . of the form . and we found in chapter 3 that the form of the solution depended upon the values of the constants . and ..
发表于 2025-3-22 13:09:46 | 显示全部楼层
发表于 2025-3-22 19:06:22 | 显示全部楼层
Solutions Using Spherical Polar Co-ordinates,In chapter 2, section 5, we looked for solutions of Laplace’s equation in spherical polar co-ordinates, ., ., . of the form .. (46)
发表于 2025-3-22 23:24:38 | 显示全部楼层
losophical perspectives on epistemic ontology, ranging from This book contains twelve chapters by leading and up-and-coming philosophers on metaepistemology, that is, on the nature, existence and authority of epistemic facts. One of the central divides in metaepistemology is between epistemic realis
发表于 2025-3-23 02:05:42 | 显示全部楼层
发表于 2025-3-23 07:01:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-3 22:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表