找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Soft Computing in Data Science; First International Michael W. Berry,Azlinah Mohamed,Bee Wah Yap Conference proceedings 2015 Springer Scie

[复制链接]
查看: 10658|回复: 57
发表于 2025-3-21 17:14:53 | 显示全部楼层 |阅读模式
书目名称Soft Computing in Data Science
副标题First International
编辑Michael W. Berry,Azlinah Mohamed,Bee Wah Yap
视频video
概述Includes supplementary material:
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Soft Computing in Data Science; First International  Michael W. Berry,Azlinah Mohamed,Bee Wah Yap Conference proceedings 2015 Springer Scie
描述.This book constitutes the refereed proceedings of the International Conference on Soft Computing in Data Science, SCDS 2015, held in Putrajaya, Malaysia, in September 2015..The 25 revised full papers presented were carefully reviewed and selected from 69 submissions. The papers are organized in topical sections on data mining; fuzzy computing; evolutionary computing and optimization; pattern recognition; human machine interface; hybrid methods...
出版日期Conference proceedings 2015
关键词data mining; human machine interface; pattern recognition; fuzzy computing; evolutionary computing; optim
版次1
doihttps://doi.org/10.1007/978-981-287-936-3
isbn_softcover978-981-287-935-6
isbn_ebook978-981-287-936-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Science+Business Media Singapore 2015
The information of publication is updating

书目名称Soft Computing in Data Science影响因子(影响力)




书目名称Soft Computing in Data Science影响因子(影响力)学科排名




书目名称Soft Computing in Data Science网络公开度




书目名称Soft Computing in Data Science网络公开度学科排名




书目名称Soft Computing in Data Science被引频次




书目名称Soft Computing in Data Science被引频次学科排名




书目名称Soft Computing in Data Science年度引用




书目名称Soft Computing in Data Science年度引用学科排名




书目名称Soft Computing in Data Science读者反馈




书目名称Soft Computing in Data Science读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:49:38 | 显示全部楼层
发表于 2025-3-22 02:31:11 | 显示全部楼层
Thanh van Do,Hai Thanh Nguyen,Nikolov Momchil,Van Thuan Do
发表于 2025-3-22 06:33:43 | 显示全部楼层
发表于 2025-3-22 10:07:39 | 显示全部楼层
Comparisons of ADABOOST, KNN, SVM and Logistic Regression in Classification of Imbalanced Dataset%,Testing: 90.2%) and precision (Training:91.9%, Testing 90.5%) for training and testing data set. For random undersampling, no overfitting occurs only for ADABOOST and logistic regression. Logistic regression is the most stable classifier exhibiting consistent training an testing results.
发表于 2025-3-22 14:11:43 | 显示全部楼层
Finding Significant Factors on World Ranking of e-Governments by Feature Selection Methods over KPIsnd studied using traditional statistical methods. In this paper, an alternative method by feature selection in data mining is proposed which computes quantitatively the relative importance of each KPI with respective to the predicted class, the rank. The main advantage of feature selection by data m
发表于 2025-3-22 18:54:43 | 显示全部楼层
Solving Curriculum Based Course Timetabling by Hybridizing Local Search Based Method within Harmony oth operators together. In addition, several harmony memory consideration rates were applied on those setups. The algorithms of all setups were tested on curriculum-based datasets taken from the International Timetabling Competition, ITC2007. The results demonstrated that our approach was able to pr
发表于 2025-3-23 00:40:21 | 显示全部楼层
A Parallel Latent Semantic Indexing (LSI) Algorithm for Malay Hadith Translated Document Retrievalext files. The processing time during the pre-processing phase of the documents for the proposed parallel LSI is measured and compared to the sequential LSI algorithm. Our results show that processing time for pre-processing tasks using our proposed parallel LSI system is faster than sequential syst
发表于 2025-3-23 02:30:16 | 显示全部楼层
发表于 2025-3-23 05:56:12 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 17:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表