找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Soft Computing in Data Science; 5th International Co Michael W. Berry,Bee Wah Yap,Mario Köppen Conference proceedings 2019 Springer Nature

[复制链接]
楼主: obdurate
发表于 2025-3-28 15:26:35 | 显示全部楼层
发表于 2025-3-28 20:29:32 | 显示全部楼层
Improving e-Commerce Severity Rating Measurement Using Consistent Fuzzy Preference RelationM) causes the fuzzy pairing matrix to be inconsistent. This inconsistency causes the weight between rules to be invalid. The Consistent Fuzzy Preference Relation (CFPR) method is present to overcome the problem of the number of paired comparisons. The CFPR method summarizes the comparison steps to f
发表于 2025-3-28 23:25:24 | 显示全部楼层
发表于 2025-3-29 06:51:35 | 显示全部楼层
An Overview of Visualization Techniques: A Survey of Food-Related Researchon of visualization techniques also has been differentiated into four type of structures of visualization which are hierarchical, relational, textual and spatial. The aim of this study is to analyze the variety of visualization techniques. This study also is to identify the criteria of each visualiz
发表于 2025-3-29 09:04:46 | 显示全部楼层
A Hybrid TSR and LSTM for Forecasting NO2 and SO2 in Surabayan individual method produced more accurate forecast at three datasets. Hence, it is in line with the results of M3 and M4 forecasting competition, i.e. more complex methods do not necessary yield better forecast than simpler ones.
发表于 2025-3-29 12:10:38 | 显示全部楼层
发表于 2025-3-29 15:59:52 | 显示全部楼层
New Hybrid Statistical Method and Machine Learning for PM10 Predictione forecast accuracy comparison showed that hybrid TSR-FFNN produced more accurate PM. forecast than other methods at SUF 7, whereas FFNN yielded more accurate forecast at SUF 1 and SUF 7. These results show that FFNN as an individual nonlinear model produce better forecast than TSR and ARIMA as an i
发表于 2025-3-29 20:06:46 | 显示全部楼层
发表于 2025-3-30 02:35:11 | 显示全部楼层
A Case Study on Student Attrition Prediction in Higher Education Using Data Mining Techniqueshms for predicting student attrition. We use the Cross-Industry Standard Process for Data Mining (CRISP-DM) that comprises of five phases for the case study. Both evaluation methods, the cross-validation and percentage split have been used to evaluate the classification methods. The study has identi
发表于 2025-3-30 06:00:11 | 显示全部楼层
cht Studierende des Maschinenbaus, der Produktionstechnik und des Wirtschaftsingenieurwesens sowie Praktiker in Produktionsbetrieben an...Prof. Dr.-Ing. Dr. h.c. Dieter Arnold..geb. 1939, Inhaber des Lehrstuhls und Leiter des Institutes für Fördertechnik und Logistiksysteme der Universität Karlsruhe
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-8 05:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表