找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Sobolev Spaces; with Applications to Vladimir Maz‘ya Book 2011Latest edition Springer-Verlag Berlin Heidelberg 2011 46E35, 42B37, 26D10.Sob

[复制链接]
楼主: HIV763
发表于 2025-3-25 04:48:04 | 显示全部楼层
Approximation in Weighted Sobolev Spaces,the .. seminorm. Now let .⊂ℝ. be an open set and let . be a nontrivial positive Radon measure on .. We will study the space ., defined as the completion of . with respect to the norm . The closure of . in . is denoted .. Note that if .<. then by Sobolev’s inequality the elements in . can be identifi
发表于 2025-3-25 09:16:05 | 显示全部楼层
,Spectrum of the Schrödinger Operator and the Dirichlet Laplacian,v’s criterion (16.6.2) involves the so-called negligible sets ., that is, sets of sufficiently small harmonic capacity..In Sects. 18.2–18.3 we show that the constant .. given by (16.6.4) can be replaced by an arbitrary constant ., 0<.<1. We even establish a stronger result allowing negligibility con
发表于 2025-3-25 12:01:05 | 显示全部楼层
发表于 2025-3-25 16:33:10 | 显示全部楼层
,Conductor and Capacitary Inequalities with Applications to Sobolev-Type Embeddings,ompact support in .. By . we mean the set {.∈.:|.(.)|>.}, where .>0. We shall use the equivalence relation .∼. to denote that the ratio ./. admits upper and lower bounds by positive constants depending only on ., ., ., and ..
发表于 2025-3-25 20:32:38 | 显示全部楼层
发表于 2025-3-26 01:32:09 | 显示全部楼层
发表于 2025-3-26 06:27:37 | 显示全部楼层
发表于 2025-3-26 12:19:43 | 显示全部楼层
发表于 2025-3-26 15:51:32 | 显示全部楼层
,Spectrum of the Schrödinger Operator and the Dirichlet Laplacian,ay happen that it is satisfied but the spectrum is not discrete (Sect. 18.4). However, we show that in the sufficient condition we can admit arbitrary functions . with values in (0,1), defined for .>0 in a neighborhood of .=0 and satisfying
发表于 2025-3-26 20:45:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 23:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表