找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Small Viscosity and Boundary Layer Methods; Theory, Stability An Guy Métivier Book 2004 Springer Science+Business Media New York 2004 Appli

[复制链接]
楼主: fitful
发表于 2025-3-25 03:48:35 | 显示全部楼层
发表于 2025-3-25 09:15:15 | 显示全部楼层
发表于 2025-3-25 12:27:27 | 显示全部楼层
Guy Métivierion, already established in discussing literature as discourse (Chapter 1), is that literary texts can be best understood in comparison with non-literary texts, because there are different tendencies, but they are subtle and not dichotomous differences. Rather a discourse-based approach to literatur
发表于 2025-3-25 16:40:56 | 显示全部楼层
发表于 2025-3-25 22:52:59 | 显示全部楼层
发表于 2025-3-26 03:34:42 | 显示全部楼层
发表于 2025-3-26 05:21:52 | 显示全部楼层
Quasilinear Boundary Layers: The Inner Layer ODEnifold theorem, which determines the boundary conditions associated to the limiting hyperbolic system. The local structure of . depends on transversality conditions or equivalently on stability conditions of the ODE.
发表于 2025-3-26 09:35:22 | 显示全部楼层
Plane Wave Stability the normal variable. We refer to the Introduction for references concerning these notions. A key point in this chapter is the theorem of F. Rousset [Ro1] asserting that the uniform Evans condition implies that the limiting hyperbolic boundary value problem satisfies the uniform Lopatinski condition (see also [Zu-Se] for viscous shocks).
发表于 2025-3-26 14:45:28 | 显示全部楼层
Stability Estimatesltipliers. A corollary of the construction of symmetrizers is the continuous extendability of the spectral spaces E_ stated in Lemma 6.2.8 and Theorem 6.4.8 (see [MZ2]). In this chapter, we always suppose that Assumption 5.1.1 is satisfied and we consider the linearized equations (6.1.2) around a profile . that satisfies (6.1.1).
发表于 2025-3-26 18:54:37 | 显示全部楼层
Kreiss Symmetrizers for Hyperbolic-Parabolic Systemsbolicity can be somewhat relaxed and that the construction extends to systems satisfying .. Finally, it is proven in [Mé3] that the block structure condition is satisfied for all hyperbolic systems with constant multiplicity. We discuss in this chapter the extension of Kreiss construction to hyperbolic-parabolic systems given in [MZ1].
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 11:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表