找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Singular Spectrum Analysis for Time Series; Nina Golyandina,Anatoly Zhigljavsky Book 20131st edition The Author(s) 2013 data analysis.fore

[复制链接]
查看: 28474|回复: 35
发表于 2025-3-21 18:25:41 | 显示全部楼层 |阅读模式
书目名称Singular Spectrum Analysis for Time Series
编辑Nina Golyandina,Anatoly Zhigljavsky
视频video
概述Presents the methodology of SSA.Shows how to use SSA both safely and with maximum effect.For professional statisticians, econometricians and specialists in any discipline.For students taking courses o
丛书名称SpringerBriefs in Statistics
图书封面Titlebook: Singular Spectrum Analysis for Time Series;  Nina Golyandina,Anatoly Zhigljavsky Book 20131st edition The Author(s) 2013 data analysis.fore
描述Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small number of interpretable components such as trend, oscillatory components and noise. It is based on the singular value decomposition of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity are assumed for the time series. This makes SSA a model-free method and hence enables SSA to have a very wide range of applicability. The present book is devoted to the methodology of SSA and shows how to use SSA both safely and with maximum effect. Potential readers of the book include: professional statisticians and econometricians, specialists in any discipline in which problems of time series analysis and forecasting occur, specialists in signal processing and those needed to extract signals from noisy data, and students taking courses on applied time series analysis.
出版日期Book 20131st edition
关键词data analysis; forecasting; signal processing; singular value decomposition; time series
版次1
doihttps://doi.org/10.1007/978-3-642-34913-3
isbn_ebook978-3-642-34913-3Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Author(s) 2013
The information of publication is updating

书目名称Singular Spectrum Analysis for Time Series影响因子(影响力)




书目名称Singular Spectrum Analysis for Time Series影响因子(影响力)学科排名




书目名称Singular Spectrum Analysis for Time Series网络公开度




书目名称Singular Spectrum Analysis for Time Series网络公开度学科排名




书目名称Singular Spectrum Analysis for Time Series被引频次




书目名称Singular Spectrum Analysis for Time Series被引频次学科排名




书目名称Singular Spectrum Analysis for Time Series年度引用




书目名称Singular Spectrum Analysis for Time Series年度引用学科排名




书目名称Singular Spectrum Analysis for Time Series读者反馈




书目名称Singular Spectrum Analysis for Time Series读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:22:48 | 显示全部楼层
发表于 2025-3-22 00:58:36 | 显示全部楼层
发表于 2025-3-22 04:54:11 | 显示全部楼层
Nina Golyandina,Anatoly Zhigljavskygh this phenomenon has been the subject of intense laboratory investigation, assessment of its clinical relevance has been difficult. The majority of patients with acute myocardial infarction undergoing coronary thrombolysis and/or angioplasty, or even those patients with Prinzmetal’s angina have no
发表于 2025-3-22 11:32:12 | 显示全部楼层
Introduction,Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting. It combines elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing.
发表于 2025-3-22 15:01:52 | 显示全部楼层
发表于 2025-3-22 19:00:35 | 显示全部楼层
Nina Golyandina,Anatoly ZhigljavskyPresents the methodology of SSA.Shows how to use SSA both safely and with maximum effect.For professional statisticians, econometricians and specialists in any discipline.For students taking courses o
发表于 2025-3-22 23:50:35 | 显示全部楼层
发表于 2025-3-23 01:29:56 | 显示全部楼层
https://doi.org/10.1007/978-3-642-34913-3data analysis; forecasting; signal processing; singular value decomposition; time series
发表于 2025-3-23 08:56:07 | 显示全部楼层
Singular Spectrum Analysis for Time Series978-3-642-34913-3Series ISSN 2191-544X Series E-ISSN 2191-5458
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 05:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表